Learning Weighting Map for Bit-Depth Expansion within a Rational Range
- URL: http://arxiv.org/abs/2204.12039v1
- Date: Tue, 26 Apr 2022 02:27:39 GMT
- Title: Learning Weighting Map for Bit-Depth Expansion within a Rational Range
- Authors: Yuqing Liu, Qi Jia, Jian Zhang, Xin Fan, Shanshe Wang, Siwei Ma, Wen
Gao
- Abstract summary: Bit-depth expansion (BDE) is one of the emerging technologies to display high bit-depth (HBD) image from low bit-depth (LBD) source.
Existing BDE methods have no unified solution for various BDE situations.
We design a bit restoration network (BRNet) to learn a weight for each pixel, which indicates the ratio of the replenished value within a rational range.
- Score: 64.15915577164894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bit-depth expansion (BDE) is one of the emerging technologies to display high
bit-depth (HBD) image from low bit-depth (LBD) source. Existing BDE methods
have no unified solution for various BDE situations, and directly learn a
mapping for each pixel from LBD image to the desired value in HBD image, which
may change the given high-order bits and lead to a huge deviation from the
ground truth. In this paper, we design a bit restoration network (BRNet) to
learn a weight for each pixel, which indicates the ratio of the replenished
value within a rational range, invoking an accurate solution without modifying
the given high-order bit information. To make the network adaptive for any
bit-depth degradation, we investigate the issue in an optimization perspective
and train the network under progressive training strategy for better
performance. Moreover, we employ Wasserstein distance as a visual quality
indicator to evaluate the difference of color distribution between restored
image and the ground truth. Experimental results show our method can restore
colorful images with fewer artifacts and false contours, and outperforms
state-of-the-art methods with higher PSNR/SSIM results and lower Wasserstein
distance. The source code will be made available at
https://github.com/yuqing-liu-dut/bit-depth-expansion
Related papers
- Deep Richardson-Lucy Deconvolution for Low-Light Image Deblurring [48.80983873199214]
We develop a data-driven approach to model the saturated pixels by a learned latent map.
Based on the new model, the non-blind deblurring task can be formulated into a maximum a posterior (MAP) problem.
To estimate high-quality deblurred images without amplified artifacts, we develop a prior estimation network.
arXiv Detail & Related papers (2023-08-10T12:53:30Z) - Deep Generalized Unfolding Networks for Image Restoration [16.943609020362395]
We propose a Deep Generalized Unfolding Network (DGUNet) for image restoration.
We integrate a gradient estimation strategy into the gradient descent step of the Proximal Gradient Descent (PGD) algorithm.
Our method is superior in terms of state-of-the-art performance, interpretability, and generalizability.
arXiv Detail & Related papers (2022-04-28T08:39:39Z) - Dual Pixel Exploration: Simultaneous Depth Estimation and Image
Restoration [77.1056200937214]
We study the formation of the DP pair which links the blur and the depth information.
We propose an end-to-end DDDNet (DP-based Depth and De Network) to jointly estimate the depth and restore the image.
arXiv Detail & Related papers (2020-12-01T06:53:57Z) - Adaptive Context-Aware Multi-Modal Network for Depth Completion [107.15344488719322]
We propose to adopt the graph propagation to capture the observed spatial contexts.
We then apply the attention mechanism on the propagation, which encourages the network to model the contextual information adaptively.
Finally, we introduce the symmetric gated fusion strategy to exploit the extracted multi-modal features effectively.
Our model, named Adaptive Context-Aware Multi-Modal Network (ACMNet), achieves the state-of-the-art performance on two benchmarks.
arXiv Detail & Related papers (2020-08-25T06:00:06Z) - Progressively Guided Alternate Refinement Network for RGB-D Salient
Object Detection [63.18846475183332]
We aim to develop an efficient and compact deep network for RGB-D salient object detection.
We propose a progressively guided alternate refinement network to refine it.
Our model outperforms existing state-of-the-art approaches by a large margin.
arXiv Detail & Related papers (2020-08-17T02:55:06Z) - A deep primal-dual proximal network for image restoration [8.797434238081372]
We design a deep network, named DeepPDNet, built from primal-dual iterations associated with the minimization of a standard penalized likelihood with an analysis prior.
Two different learning strategies: "Full learning" and "Partial learning" are proposed, the first one is the most efficient numerically.
Extensive results show that the proposed DeepPDNet demonstrates excellent performance on the MNIST and the more complex BSD68, BSD100, and SET14 datasets for image restoration and single image super-resolution task.
arXiv Detail & Related papers (2020-07-02T08:29:52Z) - Rethinking Data Augmentation for Image Super-resolution: A Comprehensive
Analysis and a New Strategy [21.89072742618842]
We provide a comprehensive analysis of the existing augmentation methods applied to the super-resolution task.
We propose CutBlur that cuts a low-resolution patch and pastes it to the corresponding high-resolution image region and vice versa.
Our method consistently and significantly improves the performance across various scenarios.
arXiv Detail & Related papers (2020-04-01T13:49:38Z) - Image Fine-grained Inpainting [89.17316318927621]
We present a one-stage model that utilizes dense combinations of dilated convolutions to obtain larger and more effective receptive fields.
To better train this efficient generator, except for frequently-used VGG feature matching loss, we design a novel self-guided regression loss.
We also employ a discriminator with local and global branches to ensure local-global contents consistency.
arXiv Detail & Related papers (2020-02-07T03:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.