Deep Generalized Unfolding Networks for Image Restoration
- URL: http://arxiv.org/abs/2204.13348v1
- Date: Thu, 28 Apr 2022 08:39:39 GMT
- Title: Deep Generalized Unfolding Networks for Image Restoration
- Authors: Chong Mou, Qian Wang, Jian Zhang
- Abstract summary: We propose a Deep Generalized Unfolding Network (DGUNet) for image restoration.
We integrate a gradient estimation strategy into the gradient descent step of the Proximal Gradient Descent (PGD) algorithm.
Our method is superior in terms of state-of-the-art performance, interpretability, and generalizability.
- Score: 16.943609020362395
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks (DNN) have achieved great success in image restoration.
However, most DNN methods are designed as a black box, lacking transparency and
interpretability. Although some methods are proposed to combine traditional
optimization algorithms with DNN, they usually demand pre-defined degradation
processes or handcrafted assumptions, making it difficult to deal with complex
and real-world applications. In this paper, we propose a Deep Generalized
Unfolding Network (DGUNet) for image restoration. Concretely, without loss of
interpretability, we integrate a gradient estimation strategy into the gradient
descent step of the Proximal Gradient Descent (PGD) algorithm, driving it to
deal with complex and real-world image degradation. In addition, we design
inter-stage information pathways across proximal mapping in different PGD
iterations to rectify the intrinsic information loss in most deep unfolding
networks (DUN) through a multi-scale and spatial-adaptive way. By integrating
the flexible gradient descent and informative proximal mapping, we unfold the
iterative PGD algorithm into a trainable DNN. Extensive experiments on various
image restoration tasks demonstrate the superiority of our method in terms of
state-of-the-art performance, interpretability, and generalizability. The
source code is available at
https://github.com/MC-E/Deep-Generalized-Unfolding-Networks-for-Image-Restoration.
Related papers
- SDIP: Self-Reinforcement Deep Image Prior Framework for Image Processing [0.7673339435080445]
Deep image prior (DIP) proposed in recent research has revealed the inherent trait of convolutional neural networks (CNN) for capturing substantial low-level image statistics priors.
In this paper, we propose the self-reinforcement deep image prior (P) as an improved version of the original DIP.
arXiv Detail & Related papers (2024-04-17T16:50:14Z) - AugUndo: Scaling Up Augmentations for Monocular Depth Completion and Estimation [51.143540967290114]
We propose a method that unlocks a wide range of previously-infeasible geometric augmentations for unsupervised depth computation and estimation.
This is achieved by reversing, or undo''-ing, geometric transformations to the coordinates of the output depth, warping the depth map back to the original reference frame.
arXiv Detail & Related papers (2023-10-15T05:15:45Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - DeepRLS: A Recurrent Network Architecture with Least Squares Implicit
Layers for Non-blind Image Deconvolution [15.986942312624]
We study the problem of non-blind image deconvolution.
We propose a novel recurrent network architecture that leads to very competitive restoration results of high image quality.
arXiv Detail & Related papers (2021-12-10T13:16:51Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
We present a learning-based solution for restoring images suffering from spatially-varying degradations.
We propose SPAIR, a network design that harnesses distortion-localization information and dynamically adjusts to difficult regions in the image.
arXiv Detail & Related papers (2021-08-19T11:02:25Z) - Deep Amended Gradient Descent for Efficient Spectral Reconstruction from
Single RGB Images [42.26124628784883]
We propose a compact, efficient, and end-to-end learning-based framework, namely AGD-Net.
We first formulate the problem explicitly based on the classic gradient descent algorithm.
AGD-Net can improve the reconstruction quality by more than 1.0 dB on average.
arXiv Detail & Related papers (2021-08-12T05:54:09Z) - Image Restoration by Deep Projected GSURE [115.57142046076164]
Ill-posed inverse problems appear in many image processing applications, such as deblurring and super-resolution.
We propose a new image restoration framework that is based on minimizing a loss function that includes a "projected-version" of the Generalized SteinUnbiased Risk Estimator (GSURE) and parameterization of the latent image by a CNN.
arXiv Detail & Related papers (2021-02-04T08:52:46Z) - A deep primal-dual proximal network for image restoration [8.797434238081372]
We design a deep network, named DeepPDNet, built from primal-dual iterations associated with the minimization of a standard penalized likelihood with an analysis prior.
Two different learning strategies: "Full learning" and "Partial learning" are proposed, the first one is the most efficient numerically.
Extensive results show that the proposed DeepPDNet demonstrates excellent performance on the MNIST and the more complex BSD68, BSD100, and SET14 datasets for image restoration and single image super-resolution task.
arXiv Detail & Related papers (2020-07-02T08:29:52Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z) - Multimodal Deep Unfolding for Guided Image Super-Resolution [23.48305854574444]
Deep learning methods rely on training data to learn an end-to-end mapping from a low-resolution input to a high-resolution output.
We propose a multimodal deep learning design that incorporates sparse priors and allows the effective integration of information from another image modality into the network architecture.
Our solution relies on a novel deep unfolding operator, performing steps similar to an iterative algorithm for convolutional sparse coding with side information.
arXiv Detail & Related papers (2020-01-21T14:41:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.