Improved performance in quantum transport calculations: A
divide-and-conquer method based on S-matrices
- URL: http://arxiv.org/abs/2204.12689v1
- Date: Wed, 27 Apr 2022 04:14:00 GMT
- Title: Improved performance in quantum transport calculations: A
divide-and-conquer method based on S-matrices
- Authors: Mauricio J. Rodr\'iguez, Carlos Ram\'irez
- Abstract summary: We propose a divide-and-conquer algorithm to find the Scattering matrix of general tight-binding structures.
The Scattering matrix allows a direct calculation of transport properties in mesoscopic systems by using the Landauer formula.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a divide-and-conquer algorithm to find recursively the Scattering
matrix of general tight-binding structures. The Scattering matrix allows a
direct calculation of transport properties in mesoscopic systems by using the
Landauer formula. The method is exact, and by analyzing the performance of the
algorithm in square, triangular and honeycomb lattices, we show a significant
improvement in comparison to other state-of-the-art recursive and non-recursive
methods.
Related papers
- Efficient algorithms for the Hadamard decomposition [14.653207365119796]
The Hadamard decomposition is a powerful technique for data analysis and matrix compression.
In this paper, we develop a framework that decomposes a given matrix into the product of two or more low-rank approximations.
We conduct experiments to compare our method with the existing descent-based approaches for the Hadamard decomposition.
arXiv Detail & Related papers (2025-04-18T11:14:25Z) - An Efficient Alternating Algorithm for ReLU-based Symmetric Matrix Decomposition [0.0]
This paper focuses on exploiting the low-rank structure of non-negative and sparse matrices via the rectified linear unit (ReLU) activation function.
We propose the ReLU-based nonlinear symmetric matrix decomposition (ReLU-NSMD) model, introduce an accelerated alternating partial Bregman (AAPB) method for its solution, and present the algorithm's convergence results.
arXiv Detail & Related papers (2025-03-21T04:32:53Z) - Regularized Projection Matrix Approximation with Applications to Community Detection [1.3761665705201904]
This paper introduces a regularized projection matrix approximation framework designed to recover cluster information from the affinity matrix.
We investigate three distinct penalty functions, each specifically tailored to address bounded, positive, and sparse scenarios.
Numerical experiments conducted on both synthetic and real-world datasets reveal that our regularized projection matrix approximation approach significantly outperforms state-of-the-art methods in clustering performance.
arXiv Detail & Related papers (2024-05-26T15:18:22Z) - Improving sample efficiency of high dimensional Bayesian optimization
with MCMC [7.241485121318798]
We propose a new method based on Markov Chain Monte Carlo to efficiently sample from an approximated posterior.
We show experimentally that both the Metropolis-Hastings and the Langevin Dynamics version of our algorithm outperform state-of-the-art methods in high-dimensional sequential optimization and reinforcement learning benchmarks.
arXiv Detail & Related papers (2024-01-05T05:56:42Z) - A fixed-point algorithm for matrix projections with applications in
quantum information [7.988085110283119]
We show that our algorithm converges exponentially fast to the optimal solution in the number of iterations.
We discuss several applications of our algorithm in quantum resource theories and quantum Shannon theory.
arXiv Detail & Related papers (2023-12-22T11:16:11Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
Clustered multi-task compressive sensing is a hierarchical model that solves multiple compressive sensing tasks.
The existing inference algorithm for this model is computationally expensive and does not scale well in high dimensions.
We propose a new algorithm that substantially accelerates model inference by avoiding the need to explicitly compute these covariance matrices.
arXiv Detail & Related papers (2023-09-30T15:57:14Z) - Deep Unrolling for Nonconvex Robust Principal Component Analysis [75.32013242448151]
We design algorithms for Robust Component Analysis (A)
It consists in decomposing a matrix into the sum of a low Principaled matrix and a sparse Principaled matrix.
arXiv Detail & Related papers (2023-07-12T03:48:26Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - Adaptive Stochastic Optimisation of Nonconvex Composite Objectives [2.1700203922407493]
We propose and analyse a family of generalised composite mirror descent algorithms.
With adaptive step sizes, the proposed algorithms converge without requiring prior knowledge of the problem.
We exploit the low-dimensional structure of the decision sets for high-dimensional problems.
arXiv Detail & Related papers (2022-11-21T18:31:43Z) - Matrix Reordering for Noisy Disordered Matrices: Optimality and
Computationally Efficient Algorithms [9.245687221460654]
Motivated by applications in single-cell biology and metagenomics, we investigate the problem of matrixing based on a noisy monotone Toeplitz matrix model.
We establish fundamental statistical limit for this problem in a decision-theoretic framework and demonstrate that a constrained least squares rate.
To address this, we propose a novel-time adaptive sorting algorithm with guaranteed performance improvement.
arXiv Detail & Related papers (2022-01-17T14:53:52Z) - Improving Metric Dimensionality Reduction with Distributed Topology [68.8204255655161]
DIPOLE is a dimensionality-reduction post-processing step that corrects an initial embedding by minimizing a loss functional with both a local, metric term and a global, topological term.
We observe that DIPOLE outperforms popular methods like UMAP, t-SNE, and Isomap on a number of popular datasets.
arXiv Detail & Related papers (2021-06-14T17:19:44Z) - Nearly Linear Row Sampling Algorithm for Quantile Regression [54.75919082407094]
We give a row sampling algorithm for the quantile loss function with sample complexity nearly linear in the dimensionality of the data.
Based upon our row sampling algorithm, we give the fastest known algorithm for quantile regression and a graph sparsification algorithm for balanced directed graphs.
arXiv Detail & Related papers (2020-06-15T13:40:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.