Efficient algorithms for the Hadamard decomposition
- URL: http://arxiv.org/abs/2504.13633v2
- Date: Tue, 22 Apr 2025 11:02:40 GMT
- Title: Efficient algorithms for the Hadamard decomposition
- Authors: Samuel Wertz, Arnaud Vandaele, Nicolas Gillis,
- Abstract summary: The Hadamard decomposition is a powerful technique for data analysis and matrix compression.<n>In this paper, we develop a framework that decomposes a given matrix into the product of two or more low-rank approximations.<n>We conduct experiments to compare our method with the existing descent-based approaches for the Hadamard decomposition.
- Score: 14.653207365119796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Hadamard decomposition is a powerful technique for data analysis and matrix compression, which decomposes a given matrix into the element-wise product of two or more low-rank matrices. In this paper, we develop an efficient algorithm to solve this problem, leveraging an alternating optimization approach that decomposes the global non-convex problem into a series of convex sub-problems. To improve performance, we explore advanced initialization strategies inspired by the singular value decomposition (SVD) and incorporate acceleration techniques by introducing momentum-based updates. Beyond optimizing the two-matrix case, we also extend the Hadamard decomposition framework to support more than two low-rank matrices, enabling approximations with higher effective ranks while preserving computational efficiency. Finally, we conduct extensive experiments to compare our method with the existing gradient descent-based approaches for the Hadamard decomposition and with traditional low-rank approximation techniques. The results highlight the effectiveness of our proposed method across diverse datasets.
Related papers
- An Efficient Alternating Algorithm for ReLU-based Symmetric Matrix Decomposition [0.0]
This paper focuses on exploiting the low-rank structure of non-negative and sparse matrices via the rectified linear unit (ReLU) activation function.
We propose the ReLU-based nonlinear symmetric matrix decomposition (ReLU-NSMD) model, introduce an accelerated alternating partial Bregman (AAPB) method for its solution, and present the algorithm's convergence results.
arXiv Detail & Related papers (2025-03-21T04:32:53Z) - Regularized Projection Matrix Approximation with Applications to Community Detection [1.3761665705201904]
This paper introduces a regularized projection matrix approximation framework designed to recover cluster information from the affinity matrix.
We investigate three distinct penalty functions, each specifically tailored to address bounded, positive, and sparse scenarios.
Numerical experiments conducted on both synthetic and real-world datasets reveal that our regularized projection matrix approximation approach significantly outperforms state-of-the-art methods in clustering performance.
arXiv Detail & Related papers (2024-05-26T15:18:22Z) - Randomized Approach to Matrix Completion: Applications in Collaborative Filtering and Image Inpainting [0.0]
Columns Selected Matrix Completion (CSMC) method combines Column Subset Selection and Low-Rank Matrix Completion.<n>We introduce two algorithms to implement CSMC, each tailored to problems of different sizes.<n>CSMC provides solutions of the same quality as state-of-the-art matrix completion algorithms based on convex optimization.
arXiv Detail & Related papers (2024-03-04T10:36:06Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - Converting ADMM to a Proximal Gradient for Convex Optimization Problems [4.56877715768796]
In sparse estimation, such as fused lasso and convex clustering, we apply either the proximal gradient method or the alternating direction method of multipliers (ADMM) to solve the problem.
This paper proposes a general method for converting the ADMM solution to the proximal gradient method, assuming that the constraints and objectives are strongly convex.
We show by numerical experiments that we can obtain a significant improvement in terms of efficiency.
arXiv Detail & Related papers (2021-04-22T07:41:12Z) - On the Efficient Implementation of the Matrix Exponentiated Gradient
Algorithm for Low-Rank Matrix Optimization [26.858608065417663]
Convex optimization over the spectrahedron has important applications in machine learning, signal processing and statistics.
We propose efficient implementations of MEG, which are tailored for optimization with low-rank matrices, and only use a single low-rank SVD on each iteration.
We also provide efficiently-computable certificates for the correct convergence of our methods.
arXiv Detail & Related papers (2020-12-18T19:14:51Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - Multi-View Spectral Clustering with High-Order Optimal Neighborhood
Laplacian Matrix [57.11971786407279]
Multi-view spectral clustering can effectively reveal the intrinsic cluster structure among data.
This paper proposes a multi-view spectral clustering algorithm that learns a high-order optimal neighborhood Laplacian matrix.
Our proposed algorithm generates the optimal Laplacian matrix by searching the neighborhood of the linear combination of both the first-order and high-order base.
arXiv Detail & Related papers (2020-08-31T12:28:40Z) - Robust Low-rank Matrix Completion via an Alternating Manifold Proximal
Gradient Continuation Method [47.80060761046752]
Robust low-rank matrix completion (RMC) has been studied extensively for computer vision, signal processing and machine learning applications.
This problem aims to decompose a partially observed matrix into the superposition of a low-rank matrix and a sparse matrix, where the sparse matrix captures the grossly corrupted entries of the matrix.
A widely used approach to tackle RMC is to consider a convex formulation, which minimizes the nuclear norm of the low-rank matrix (to promote low-rankness) and the l1 norm of the sparse matrix (to promote sparsity).
In this paper, motivated by some recent works on low-
arXiv Detail & Related papers (2020-08-18T04:46:22Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
We propose a new randomized algorithm for solving L2-regularized least-squares problems based on sketching.
We consider two of the most popular random embeddings, namely, Gaussian embeddings and the Subsampled Randomized Hadamard Transform (SRHT)
arXiv Detail & Related papers (2020-06-10T15:00:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.