論文の概要: Human-Centered Prior-Guided and Task-Dependent Multi-Task Representation
Learning for Action Recognition Pre-Training
- arxiv url: http://arxiv.org/abs/2204.12729v1
- Date: Wed, 27 Apr 2022 06:51:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-28 22:16:25.731858
- Title: Human-Centered Prior-Guided and Task-Dependent Multi-Task Representation
Learning for Action Recognition Pre-Training
- Title(参考訳): 行動認識事前学習のための人間中心・タスク依存型マルチタスク表現学習
- Authors: Guanhong Wang, Keyu Lu, Yang Zhou, Zhanhao He and Gaoang Wang
- Abstract要約: 本稿では,人間中心の事前知識を利用した行動認識事前学習フレームワークを提案する。
具体的には、人間の構文解析モデルから知識を抽出し、表現の意味的能力を強化する。
さらに,知識蒸留とコントラスト学習を組み合わせることで,タスク依存型マルチタスクフレームワークを構成する。
- 参考スコア(独自算出の注目度): 8.571437792425417
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recently, much progress has been made for self-supervised action recognition.
Most existing approaches emphasize the contrastive relations among videos,
including appearance and motion consistency. However, two main issues remain
for existing pre-training methods: 1) the learned representation is neutral and
not informative for a specific task; 2) multi-task learning-based pre-training
sometimes leads to sub-optimal solutions due to inconsistent domains of
different tasks. To address the above issues, we propose a novel action
recognition pre-training framework, which exploits human-centered prior
knowledge that generates more informative representation, and avoids the
conflict between multiple tasks by using task-dependent representations.
Specifically, we distill knowledge from a human parsing model to enrich the
semantic capability of representation. In addition, we combine knowledge
distillation with contrastive learning to constitute a task-dependent
multi-task framework. We achieve state-of-the-art performance on two popular
benchmarks for action recognition task, i.e., UCF101 and HMDB51, verifying the
effectiveness of our method.
- Abstract(参考訳): 近年,自己教師付き行動認識の進歩が進んでいる。
既存のアプローチのほとんどは、外観や動きの一貫性など、ビデオ間の対比関係を強調している。
しかし、既存の事前学習方法には2つの大きな問題が残っている。
1) 学習された表現は中立であり,特定の業務について情報的でない。
2)マルチタスク学習に基づく事前学習は、異なるタスクの一貫性の欠如による最適化ソリューションにつながることがある。
上記の課題に対処するため,人間中心の事前知識を活用し,タスク依存表現を用いて複数のタスク間の衝突を回避する,新しい行動認識事前学習フレームワークを提案する。
具体的には,人間の解析モデルから知識を抽出し,表現の意味的能力を高める。
さらに,知識蒸留とコントラスト学習を組み合わせることで,タスク依存型マルチタスクフレームワークを構成する。
UCF101 と HMDB51 という2つの一般的な行動認識タスクのベンチマークにおいて,提案手法の有効性を検証する。
関連論文リスト
- The impact of Compositionality in Zero-shot Multi-label action recognition for Object-based tasks [4.971065912401385]
ゼロショットマルチラベル動作認識のための統一的なアプローチであるDual-VCLIPを提案する。
Dual-VCLIPは、マルチラベル画像分類のためのDualCoOp法を用いて、ゼロショット動作認識法であるVCLIPを強化する。
オブジェクトベースのアクションの大部分を含むCharadesデータセット上で,本手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-05-14T15:28:48Z) - Continual Robot Learning using Self-Supervised Task Inference [19.635428830237842]
新しいタスクを継続的に学習するための自己教師型タスク推論手法を提案する。
我々は、行動マッチング型自己教師型学習目標を用いて、新しいタスク推論ネットワーク(TINet)を訓練する。
マルチタスクポリシはTINet上に構築され、タスクよりもパフォーマンスを最適化するために強化学習でトレーニングされている。
論文 参考訳(メタデータ) (2023-09-10T09:32:35Z) - Identifying Auxiliary or Adversarial Tasks Using Necessary Condition
Analysis for Adversarial Multi-task Video Understanding [34.75145779372538]
本稿では,モデルが適切に動作すべき補助タスクと,モデルがうまく動作すべきでない逆タスクの両方を組み込むことで,マルチタスク学習の一般化概念を提案する。
提案する新たなフレームワークであるAMT(Adversarial Multi-Task Neural Networks)は,NAAがシーン認識であると判断した敵タスクをペナルティ化する。
提案手法は, 精度を3%向上させるとともに, 相関バイアスのシーン特徴ではなく, アクション特徴への参画を促す。
論文 参考訳(メタデータ) (2022-08-22T06:26:11Z) - Learning Multi-Task Transferable Rewards via Variational Inverse
Reinforcement Learning [10.782043595405831]
我々は、生成的対向ネットワークの枠組みに基づく複数のタスクを伴う状況に対して、エンパワーメントに基づく正規化手法を拡張した。
未知のダイナミクスを持つマルチタスク環境下では、ラベルのない専門家の例から報酬とポリシーを学ぶことに集中する。
提案手法は, 状況的相互情報の変動的下限を導出し, 最適化する。
論文 参考訳(メタデータ) (2022-06-19T22:32:41Z) - Leveraging convergence behavior to balance conflicting tasks in
multi-task learning [3.6212652499950138]
マルチタスク学習は、パフォーマンスの一般化を改善するために相関タスクを使用する。
タスクは互いに衝突することが多いため、複数のタスクの勾配をどのように組み合わせるべきかを定義するのは難しい。
バックプロパゲーション中の各タスクの重要度を調整する動的バイアスを生成するために,勾配の時間的挙動を考慮した手法を提案する。
論文 参考訳(メタデータ) (2022-04-14T01:52:34Z) - Modular Adaptive Policy Selection for Multi-Task Imitation Learning
through Task Division [60.232542918414985]
マルチタスク学習は、しばしば負の伝達に悩まされ、タスク固有の情報を共有する。
これは、プロトポリケーションをモジュールとして使用して、タスクを共有可能な単純なサブ振る舞いに分割する。
また、タスクを共有サブ行動とタスク固有のサブ行動の両方に自律的に分割する能力を示す。
論文 参考訳(メタデータ) (2022-03-28T15:53:17Z) - Variational Multi-Task Learning with Gumbel-Softmax Priors [105.22406384964144]
マルチタスク学習は、タスク関連性を探究し、個々のタスクを改善することを目的としている。
本稿では,複数のタスクを学習するための一般的な確率的推論フレームワークである変分マルチタスク学習(VMTL)を提案する。
論文 参考訳(メタデータ) (2021-11-09T18:49:45Z) - Towards More Generalizable One-shot Visual Imitation Learning [81.09074706236858]
汎用ロボットは、幅広いタスクを習得し、過去の経験を生かして、新しいタスクを素早く学ぶことができるべきである。
ワンショット模倣学習(OSIL)は、専門家のデモンストレーションでエージェントを訓練することで、この目標にアプローチする。
我々は、より野心的なマルチタスク設定を調査することで、より高度な一般化能力を追求する。
論文 参考訳(メタデータ) (2021-10-26T05:49:46Z) - Distribution Matching for Heterogeneous Multi-Task Learning: a
Large-scale Face Study [75.42182503265056]
マルチタスク学習は、共有学習アルゴリズムによって複数のタスクを共同で学習する方法論として登場した。
我々は異種mtlに対処し,検出,分類,回帰問題を同時に解決する。
大規模な顔分析のための最初のフレームワークであるFaceBehaviorNetを構築し、すべての顔行動タスクを共同で学習する。
論文 参考訳(メタデータ) (2021-05-08T22:26:52Z) - Measuring and Harnessing Transference in Multi-Task Learning [58.48659733262734]
マルチタスク学習は、あるタスクによって学習された情報を活用して、他のタスクのトレーニングに役立てることができる。
情報伝達や伝達のダイナミクスを、トレーニングを通して分析する。
論文 参考訳(メタデータ) (2020-10-29T08:25:43Z) - Auxiliary Learning by Implicit Differentiation [54.92146615836611]
補助的なタスクによるニューラルネットワークのトレーニングは、関心のあるメインタスクのパフォーマンスを改善するための一般的なプラクティスである。
そこで我々は,暗黙の識別に基づく両課題を対象とした新しいフレームワークAuxiLearnを提案する。
まず、有用な補助関数が知られている場合、全ての損失を1つのコヒーレントな目的関数に組み合わせたネットワークの学習を提案する。
第二に、有用な補助タスクが知られていない場合、意味のある新しい補助タスクを生成するネットワークの学習方法について述べる。
論文 参考訳(メタデータ) (2020-06-22T19:35:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。