論文の概要: Machines of finite depth: towards a formalization of neural networks
- arxiv url: http://arxiv.org/abs/2204.12786v1
- Date: Wed, 27 Apr 2022 09:17:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-28 14:20:54.832095
- Title: Machines of finite depth: towards a formalization of neural networks
- Title(参考訳): 有限深さ機械:ニューラルネットワークの形式化に向けて
- Authors: Pietro Vertechi and Mattia G. Bergomi
- Abstract要約: 人工ニューラルネットワークとそのアーキテクチャを、一般的な数学的構築の特定の例、すなわち有限深さの機械として形式的に記述できる統一的なフレームワークを提供する。
我々は、この主張を理論的に、実用的に、いくつかの古典的アーキテクチャを一般化する統一的な実装、すなわち、リッチなショートカット構造を持つ高密度、畳み込み、反復的なニューラルネットワーク、およびそれぞれのバックプロパゲーションルールによって証明する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We provide a unifying framework where artificial neural networks and their
architectures can be formally described as particular cases of a general
mathematical construction--machines of finite depth. Unlike neural networks,
machines have a precise definition, from which several properties follow
naturally. Machines of finite depth are modular (they can be combined),
efficiently computable and differentiable. The backward pass of a machine is
again a machine and can be computed without overhead using the same procedure
as the forward pass. We prove this statement theoretically and practically, via
a unified implementation that generalizes several classical
architectures--dense, convolutional, and recurrent neural networks with a rich
shortcut structure--and their respective backpropagation rules.
- Abstract(参考訳): We provide a unifying framework where artificial neural networks and their architectures can be formally described as particular cases of a general mathematical construction--machines of finite depth. Unlike neural networks, machines have a precise definition, from which several properties follow naturally. Machines of finite depth are modular (they can be combined), efficiently computable and differentiable. The backward pass of a machine is again a machine and can be computed without overhead using the same procedure as the forward pass. We prove this statement theoretically and practically, via a unified implementation that generalizes several classical architectures--dense, convolutional, and recurrent neural networks with a rich shortcut structure--and their respective backpropagation rules.
関連論文リスト
- Riemannian Residual Neural Networks [58.925132597945634]
残余ニューラルネットワーク(ResNet)の拡張方法を示す。
ResNetは、機械学習において、有益な学習特性、優れた経験的結果、そして様々なニューラルネットワークを構築する際に容易に組み込める性質のために、ユビキタスになった。
論文 参考訳(メタデータ) (2023-10-16T02:12:32Z) - Gaussian Process Surrogate Models for Neural Networks [6.8304779077042515]
科学と工学において、モデリング(英: modeling)とは、内部プロセスが不透明な複雑なシステムを理解するために用いられる方法論である。
本稿では,ガウス過程を用いたニューラルネットワークの代理モデルのクラスを構築する。
提案手法は,ニューラルネットワークのスペクトルバイアスに関連する既存の現象を捕捉し,サロゲートモデルを用いて現実的な問題を解決することを実証する。
論文 参考訳(メタデータ) (2022-08-11T20:17:02Z) - Universal approximation property of invertible neural networks [76.95927093274392]
Invertible Neural Network (INN) は、設計によって可逆性を持つニューラルネットワークアーキテクチャである。
その可逆性とヤコビアンのトラクタビリティのおかげで、IGNは確率的モデリング、生成的モデリング、表現的学習など、さまざまな機械学習応用がある。
論文 参考訳(メタデータ) (2022-04-15T10:45:26Z) - Quasi-orthogonality and intrinsic dimensions as measures of learning and
generalisation [55.80128181112308]
ニューラルネットワークの特徴空間の次元性と準直交性は、ネットワークの性能差別と共同して機能する可能性があることを示す。
本研究は, ネットワークの最終的な性能と, ランダムに初期化された特徴空間の特性との関係を示唆する。
論文 参考訳(メタデータ) (2022-03-30T21:47:32Z) - Modeling Structure with Undirected Neural Networks [20.506232306308977]
任意の順序で実行できる計算を指定するためのフレキシブルなフレームワークである、非指向型ニューラルネットワークを提案する。
さまざまなタスクにおいて、非構造的かつ構造化された非指向型ニューラルアーキテクチャの有効性を実証する。
論文 参考訳(メタデータ) (2022-02-08T10:06:51Z) - Unified Field Theory for Deep and Recurrent Neural Networks [56.735884560668985]
本稿では,再帰的ネットワークと深層ネットワークの両方に対する平均場理論の統一的,体系的な導出について述べる。
平均場理論への収束は、ディープネットワークよりもリカレントネットワークの方が典型的に遅い。
提案手法はガウス過程が1/n$の体系的展開の最下位次数であることを示す。
論文 参考訳(メタデータ) (2021-12-10T15:06:11Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
標準ガウス重みと一様分布バイアスを持つ十分に大きな2層ReLUネットワークは、この問題を高い確率で解くことができることを示す。
我々は、相互複雑性という新しい概念の観点から、データの関連構造を定量化する。
論文 参考訳(メタデータ) (2021-07-31T10:25:26Z) - Reframing Neural Networks: Deep Structure in Overcomplete
Representations [41.84502123663809]
本稿では,構造化過剰フレームを用いた表現学習のための統一フレームワークであるdeep frame approximationを提案する。
表現一意性と安定性に関連付けられたデータ非依存的なコヒーレンス尺度であるdeep frame potentialとの構造的差異を定量化する。
この超完全表現の確立された理論への接続は、原理化されたディープネットワークアーキテクチャ設計の新たな方向性を示唆している。
論文 参考訳(メタデータ) (2021-03-10T01:15:14Z) - Reservoir Memory Machines as Neural Computers [70.5993855765376]
微分可能なニューラルネットワークは、干渉することなく明示的なメモリで人工ニューラルネットワークを拡張する。
我々は、非常に効率的に訓練できるモデルを用いて、微分可能なニューラルネットワークの計算能力を実現する。
論文 参考訳(メタデータ) (2020-09-14T12:01:30Z) - Parametric machines: a fresh approach to architecture search [0.0]
単純な機械がより複雑な機械にどのように組み合わされるかを示す。
ニューラルネットワークとニューラル常微分方程式を一般化する有限・無限深度機械について検討する。
論文 参考訳(メタデータ) (2020-07-06T14:27:06Z) - On the computational power and complexity of Spiking Neural Networks [0.0]
本研究では, スパイクニューラルネットワークを機械モデルとして導入し, 親しみやすいチューリングマシンとは対照的に, 情報と操作を機械内に共同配置する。
正規問題を導入し、複雑性クラスの階層を定義し、いくつかの最初の完全性結果を提供する。
論文 参考訳(メタデータ) (2020-01-23T10:40:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。