Cross-Camera Trajectories Help Person Retrieval in a Camera Network
- URL: http://arxiv.org/abs/2204.12900v3
- Date: Tue, 4 Jul 2023 02:20:38 GMT
- Title: Cross-Camera Trajectories Help Person Retrieval in a Camera Network
- Authors: Xin Zhang and Xiaohua Xie and Jianhuang Lai and Wei-Shi Zheng
- Abstract summary: Existing methods often rely on purely visual matching or consider temporal constraints but ignore the spatial information of the camera network.
We propose a pedestrian retrieval framework based on cross-camera generation, which integrates both temporal and spatial information.
To verify the effectiveness of our method, we construct the first cross-camera pedestrian trajectory dataset.
- Score: 124.65912458467643
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We are concerned with retrieving a query person from multiple videos captured
by a non-overlapping camera network. Existing methods often rely on purely
visual matching or consider temporal constraints but ignore the spatial
information of the camera network. To address this issue, we propose a
pedestrian retrieval framework based on cross-camera trajectory generation,
which integrates both temporal and spatial information. To obtain pedestrian
trajectories, we propose a novel cross-camera spatio-temporal model that
integrates pedestrians' walking habits and the path layout between cameras to
form a joint probability distribution. Such a spatio-temporal model among a
camera network can be specified using sparsely sampled pedestrian data. Based
on the spatio-temporal model, cross-camera trajectories can be extracted by the
conditional random field model and further optimized by restricted non-negative
matrix factorization. Finally, a trajectory re-ranking technique is proposed to
improve the pedestrian retrieval results. To verify the effectiveness of our
method, we construct the first cross-camera pedestrian trajectory dataset, the
Person Trajectory Dataset, in real surveillance scenarios. Extensive
experiments verify the effectiveness and robustness of the proposed method.
Related papers
- XLD: A Cross-Lane Dataset for Benchmarking Novel Driving View Synthesis [84.23233209017192]
This paper presents a novel driving view synthesis dataset and benchmark specifically designed for autonomous driving simulations.
The dataset is unique as it includes testing images captured by deviating from the training trajectory by 1-4 meters.
We establish the first realistic benchmark for evaluating existing NVS approaches under front-only and multi-camera settings.
arXiv Detail & Related papers (2024-06-26T14:00:21Z) - City-Scale Multi-Camera Vehicle Tracking System with Improved Self-Supervised Camera Link Model [0.0]
This article introduces an innovative multi-camera vehicle tracking system that utilizes a self-supervised camera link model.
The proposed method achieves a new state-of-the-art among automatic camera-link based methods in CityFlow V2 benchmarks with 61.07% IDF1 Score.
arXiv Detail & Related papers (2024-05-18T17:28:35Z) - Enhancing Multi-Camera People Tracking with Anchor-Guided Clustering and
Spatio-Temporal Consistency ID Re-Assignment [22.531044994763487]
We propose a novel multi-camera multiple people tracking method that uses anchor clustering-guided for cross-camera reassigning.
Our approach aims to improve accuracy of tracking by identifying key features that are unique to every individual.
The method has demonstrated robustness and effectiveness in handling both synthetic and real-world data.
arXiv Detail & Related papers (2023-04-19T07:38:15Z) - Fast Trajectory End-Point Prediction with Event Cameras for Reactive
Robot Control [4.110120522045467]
In this paper, we propose to exploit the low latency, motion-driven sampling, and data compression properties of event cameras to overcome these issues.
As a use-case, we use a Panda robotic arm to intercept a ball bouncing on a table.
We train the network in simulation to speed up the dataset acquisition and then fine-tune the models on real trajectories.
arXiv Detail & Related papers (2023-02-27T14:14:52Z) - Beyond Cross-view Image Retrieval: Highly Accurate Vehicle Localization
Using Satellite Image [91.29546868637911]
This paper addresses the problem of vehicle-mounted camera localization by matching a ground-level image with an overhead-view satellite map.
The key idea is to formulate the task as pose estimation and solve it by neural-net based optimization.
Experiments on standard autonomous vehicle localization datasets have confirmed the superiority of the proposed method.
arXiv Detail & Related papers (2022-04-10T19:16:58Z) - Real Time Monocular Vehicle Velocity Estimation using Synthetic Data [78.85123603488664]
We look at the problem of estimating the velocity of road vehicles from a camera mounted on a moving car.
We propose a two-step approach where first an off-the-shelf tracker is used to extract vehicle bounding boxes and then a small neural network is used to regress the vehicle velocity.
arXiv Detail & Related papers (2021-09-16T13:10:27Z) - Cross-Camera Feature Prediction for Intra-Camera Supervised Person
Re-identification across Distant Scenes [70.30052164401178]
Person re-identification (Re-ID) aims to match person images across non-overlapping camera views.
ICS-DS Re-ID uses cross-camera unpaired data with intra-camera identity labels for training.
Cross-camera feature prediction method to mine cross-camera self supervision information.
Joint learning of global-level and local-level features forms a global-local cross-camera feature prediction scheme.
arXiv Detail & Related papers (2021-07-29T11:27:50Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z) - STINet: Spatio-Temporal-Interactive Network for Pedestrian Detection and
Trajectory Prediction [24.855059537779294]
We present a novel end-to-end two-stage network: Spatio--Interactive Network (STINet)
In addition to 3D geometry of pedestrians, we model temporal information for each of the pedestrians.
Our method predicts both current and past locations in the first stage, so that each pedestrian can be linked across frames.
arXiv Detail & Related papers (2020-05-08T18:43:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.