Fast Trajectory End-Point Prediction with Event Cameras for Reactive
Robot Control
- URL: http://arxiv.org/abs/2302.13796v1
- Date: Mon, 27 Feb 2023 14:14:52 GMT
- Title: Fast Trajectory End-Point Prediction with Event Cameras for Reactive
Robot Control
- Authors: Marco Monforte, Luna Gava, Massimiliano Iacono, Arren Glover, Chiara
Bartolozzi
- Abstract summary: In this paper, we propose to exploit the low latency, motion-driven sampling, and data compression properties of event cameras to overcome these issues.
As a use-case, we use a Panda robotic arm to intercept a ball bouncing on a table.
We train the network in simulation to speed up the dataset acquisition and then fine-tune the models on real trajectories.
- Score: 4.110120522045467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prediction skills can be crucial for the success of tasks where robots have
limited time to act or joints actuation power. In such a scenario, a vision
system with a fixed, possibly too low, sampling rate could lead to the loss of
informative points, slowing down prediction convergence and reducing the
accuracy. In this paper, we propose to exploit the low latency, motion-driven
sampling, and data compression properties of event cameras to overcome these
issues. As a use-case, we use a Panda robotic arm to intercept a ball bouncing
on a table. To predict the interception point, we adopt a Stateful LSTM
network, a specific LSTM variant without fixed input length, which perfectly
suits the event-driven paradigm and the problem at hand, where the length of
the trajectory is not defined. We train the network in simulation to speed up
the dataset acquisition and then fine-tune the models on real trajectories.
Experimental results demonstrate how using a dense spatial sampling (i.e. event
cameras) significantly increases the number of intercepted trajectories as
compared to a fixed temporal sampling (i.e. frame-based cameras).
Related papers
- Layout Sequence Prediction From Noisy Mobile Modality [53.49649231056857]
Trajectory prediction plays a vital role in understanding pedestrian movement for applications such as autonomous driving and robotics.
Current trajectory prediction models depend on long, complete, and accurately observed sequences from visual modalities.
We propose LTrajDiff, a novel approach that treats objects obstructed or out of sight as equally important as those with fully visible trajectories.
arXiv Detail & Related papers (2023-10-09T20:32:49Z) - SpikeMOT: Event-based Multi-Object Tracking with Sparse Motion Features [52.213656737672935]
SpikeMOT is an event-based multi-object tracker.
SpikeMOT uses spiking neural networks to extract sparsetemporal features from event streams associated with objects.
arXiv Detail & Related papers (2023-09-29T05:13:43Z) - EV-Catcher: High-Speed Object Catching Using Low-latency Event-based
Neural Networks [107.62975594230687]
We demonstrate an application where event cameras excel: accurately estimating the impact location of fast-moving objects.
We introduce a lightweight event representation called Binary Event History Image (BEHI) to encode event data at low latency.
We show that the system is capable of achieving a success rate of 81% in catching balls targeted at different locations, with a velocity of up to 13 m/s even on compute-constrained embedded platforms.
arXiv Detail & Related papers (2023-04-14T15:23:28Z) - PUCK: Parallel Surface and Convolution-kernel Tracking for Event-Based
Cameras [4.110120522045467]
Event-cameras can guarantee fast visual sensing in dynamic environments, but require a tracking algorithm that can keep up with the high data rate induced by the robot ego-motion.
We introduce a novel tracking method that leverages the Exponential Reduced Ordinal Surface (EROS) data representation to decouple event-by-event processing and tracking.
We propose the task of tracking the air hockey puck sliding on a surface, with the future aim of controlling the iCub robot to reach the target precisely and on time.
arXiv Detail & Related papers (2022-05-16T13:23:52Z) - Cross-Camera Trajectories Help Person Retrieval in a Camera Network [124.65912458467643]
Existing methods often rely on purely visual matching or consider temporal constraints but ignore the spatial information of the camera network.
We propose a pedestrian retrieval framework based on cross-camera generation, which integrates both temporal and spatial information.
To verify the effectiveness of our method, we construct the first cross-camera pedestrian trajectory dataset.
arXiv Detail & Related papers (2022-04-27T13:10:48Z) - Real-time Object Detection for Streaming Perception [84.2559631820007]
Streaming perception is proposed to jointly evaluate the latency and accuracy into a single metric for video online perception.
We build a simple and effective framework for streaming perception.
Our method achieves competitive performance on Argoverse-HD dataset and improves the AP by 4.9% compared to the strong baseline.
arXiv Detail & Related papers (2022-03-23T11:33:27Z) - Fast Motion Understanding with Spatiotemporal Neural Networks and
Dynamic Vision Sensors [99.94079901071163]
This paper presents a Dynamic Vision Sensor (DVS) based system for reasoning about high speed motion.
We consider the case of a robot at rest reacting to a small, fast approaching object at speeds higher than 15m/s.
We highlight the results of our system to a toy dart moving at 23.4m/s with a 24.73deg error in $theta$, 18.4mm average discretized radius prediction error, and 25.03% median time to collision prediction error.
arXiv Detail & Related papers (2020-11-18T17:55:07Z) - Event-based Robotic Grasping Detection with Neuromorphic Vision Sensor
and Event-Stream Dataset [8.030163836902299]
Neuromorphic vision is a small and young community of research. Compared to traditional frame-based computer vision, neuromorphic vision is a small and young community of research.
We construct a robotic grasping dataset named Event-Stream dataset with 91 objects.
As leds blink at high frequency, the Event-Stream dataset is annotated in a high frequency of 1 kHz.
We develop a deep neural network for grasping detection which consider the angle learning problem as classification instead of regression.
arXiv Detail & Related papers (2020-04-28T16:55:19Z) - End-to-end Learning of Object Motion Estimation from Retinal Events for
Event-based Object Tracking [35.95703377642108]
We propose a novel deep neural network to learn and regress a parametric object-level motion/transform model for event-based object tracking.
To achieve this goal, we propose a synchronous Time-Surface with Linear Time Decay representation.
We feed the sequence of TSLTD frames to a novel Retinal Motion Regression Network (RMRNet) perform to an end-to-end 5-DoF object motion regression.
arXiv Detail & Related papers (2020-02-14T08:19:50Z) - Exploiting Event Cameras for Spatio-Temporal Prediction of Fast-Changing
Trajectories [7.13400854198045]
This paper investigates trajectory prediction for robotics, to improve the interaction of robots with moving targets.
We apply state of the art machine learning, specifically based on Long-Short Term Memory (LSTM) architectures.
arXiv Detail & Related papers (2020-01-05T14:37:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.