論文の概要: Spending Privacy Budget Fairly and Wisely
- arxiv url: http://arxiv.org/abs/2204.12903v1
- Date: Wed, 27 Apr 2022 13:13:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-28 18:12:23.418726
- Title: Spending Privacy Budget Fairly and Wisely
- Title(参考訳): プライバシー予算を公平かつ賢明に使い
- Authors: Lucas Rosenblatt and Joshua Allen and Julia Stoyanovich
- Abstract要約: 差分プライベート(DP)合成データ生成は、データへのアクセスを改善するための実用的な方法である。
DP固有の問題のひとつは、"プライバシ予算"が一般的に、データセットの機能間で均等に"発効"していることだ。
我々は,DPデータに基づいてトレーニングされたモデルの予測精度を最大化するために,プライバシー予算を「賢明に」配布するアンサンブル手法を開発した。
- 参考スコア(独自算出の注目度): 7.975975942400017
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Differentially private (DP) synthetic data generation is a practical method
for improving access to data as a means to encourage productive partnerships.
One issue inherent to DP is that the "privacy budget" is generally "spent"
evenly across features in the data set. This leads to good statistical parity
with the real data, but can undervalue the conditional probabilities and
marginals that are critical for predictive quality of synthetic data. Further,
loss of predictive quality may be non-uniform across the data set, with subsets
that correspond to minority groups potentially suffering a higher loss.
In this paper, we develop ensemble methods that distribute the privacy budget
"wisely" to maximize predictive accuracy of models trained on DP data, and
"fairly" to bound potential disparities in accuracy across groups and reduce
inequality. Our methods are based on the insights that feature importance can
inform how privacy budget is allocated, and, further, that per-group feature
importance and fairness-related performance objectives can be incorporated in
the allocation. These insights make our methods tunable to social contexts,
allowing data owners to produce balanced synthetic data for predictive
analysis.
- Abstract(参考訳): 差分プライベート(dp)合成データ生成は、生産的パートナーシップを促進する手段としてデータへのアクセスを改善するための実用的な方法である。
DP固有の問題のひとつは、"プライバシ予算"が一般的に、データセットのフィーチャを均等に分散していることだ。
これは実際のデータと統計学的に同等であるが、合成データの予測品質に不可欠な条件付き確率と限界を過小評価することができる。
さらに、予測品質の損失はデータセット全体で一様ではなく、少数派グループに対応するサブセットがより高い損失を被る可能性がある。
本稿では,dpデータにトレーニングされたモデルの予測精度を最大化するために,プライバシ予算を「任意」に分配するアンサンブル手法を開発し,グループ間の精度の潜在的な差を限定し,不平等を低減させる。
当社の手法は,プライバシ予算の割り当て方法と,グループ毎の機能重要度と公平性に関連するパフォーマンス目標が,その割り当てに組み込まれる可能性に関する洞察に基づいています。
これらの知見は、我々の手法を社会的文脈に適応させ、データ所有者が予測分析のためにバランスのとれた合成データを作成できるようにする。
関連論文リスト
- DP-CDA: An Algorithm for Enhanced Privacy Preservation in Dataset Synthesis Through Randomized Mixing [0.8739101659113155]
有効なデータパブリッシングアルゴリズムであるemphDP-CDAを導入する。
提案アルゴリズムは、クラス固有の方法でデータをランダムに混合し、プライバシー保証を確保するために慎重に調整されたランダム性を誘導することにより、合成データセットを生成する。
以上の結果から,DP-CDAを用いた合成データセットは,同一のプライバシー要件下であっても,従来のデータパブリッシングアルゴリズムで生成したデータセットよりも優れた実用性が得られることが示唆された。
論文 参考訳(メタデータ) (2024-11-25T06:14:06Z) - Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
本稿では,PseudoProbability Unlearning (PPU)を提案する。
提案手法は,最先端の手法に比べて20%以上の誤りを忘れる改善を実現している。
論文 参考訳(メタデータ) (2024-11-04T21:27:06Z) - Stratified Prediction-Powered Inference for Hybrid Language Model Evaluation [62.2436697657307]
予測駆動推論(英: Prediction-powered Inference, PPI)は、人間ラベル付き限られたデータに基づいて統計的推定を改善する手法である。
我々はStratPPI(Stratified Prediction-Powered Inference)という手法を提案する。
単純なデータ階層化戦略を用いることで,基礎的なPPI推定精度を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2024-06-06T17:37:39Z) - Privacy Amplification for the Gaussian Mechanism via Bounded Support [64.86780616066575]
インスタンスごとの差分プライバシー(pDP)やフィッシャー情報損失(FIL)といったデータ依存のプライバシ会計フレームワークは、固定されたトレーニングデータセット内の個人に対してきめ細かいプライバシー保証を提供する。
本稿では,データ依存会計下でのプライバシ保証を向上することを示すとともに,バウンドサポートによるガウス機構の簡単な修正を提案する。
論文 参考訳(メタデータ) (2024-03-07T21:22:07Z) - Learning Antidote Data to Individual Unfairness [23.119278763970037]
個人の公平さは、個々のケースに対する公平な扱いを記述する上で不可欠な概念である。
従来の研究では、個人的公正性は予測不変問題として特徴づけられていた。
我々は,予測ユーティリティの最小あるいはゼロのコストで,個人の不公平さを抑える方法を示す。
論文 参考訳(メタデータ) (2022-11-29T03:32:39Z) - Improved Generalization Guarantees in Restricted Data Models [16.193776814471768]
差分プライバシーは、適応的、または探索的、データ分析による妥当性の脅威から保護されることが知られている。
この仮定では、データの異なる部分におけるプライバシー予算の「再利用」が可能であり、オーバーフィッティングのリスクを増大させることなく、精度を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2022-07-20T16:04:12Z) - Data Sharing Markets [95.13209326119153]
我々は、各エージェントがデータの買い手および売り手の両方になり得る設定について検討する。
両データ交換(データ付きトレーディングデータ)と一方データ交換(お金付きトレーディングデータ)の2つの事例を考察する。
論文 参考訳(メタデータ) (2021-07-19T06:00:34Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
フェデレートラーニングは、ユーザ間でプライベートデータを共有せずに、協調的にモデルを学習することで、データのプライバシを保護することを目的としている。
敵は、リリースしたモデルを攻撃することによって、プライベートトレーニングデータを推測することができる。
差別化プライバシは、トレーニングされたモデルの正確性や実用性を著しく低下させる価格で、このような攻撃に対する統計的保護を提供する。
論文 参考訳(メタデータ) (2020-05-01T04:28:38Z) - Really Useful Synthetic Data -- A Framework to Evaluate the Quality of
Differentially Private Synthetic Data [2.538209532048867]
プライバシ保護の原則を付加する合成データ生成の最近の進歩は、プライバシ保護の方法で統計情報を共有するための重要なステップである。
データプライバシとデータ品質のトレードオフを最適化するためには、後者について詳しく考える必要があります。
本研究では,応用研究者の視点から,差分的にプライベートな合成データの質を評価する枠組みを開発する。
論文 参考訳(メタデータ) (2020-04-16T16:24:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。