論文の概要: Neural-Network Quantum States: A Systematic Review
- arxiv url: http://arxiv.org/abs/2204.12966v1
- Date: Wed, 27 Apr 2022 14:25:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-15 09:19:31.117619
- Title: Neural-Network Quantum States: A Systematic Review
- Title(参考訳): ニューラルネットワーク量子状態:システムレビュー
- Authors: David R. Vivas, Javier Madro\~nero, Victor Bucheli, Luis O. G\'omez,
John H. Reina
- Abstract要約: いわゆる現代AI革命は、物理学を含む社会科学、人間科学、自然科学のあらゆる領域に到達した。
量子多体物理学の文脈では、機械学習との交わりは、高インパクトな研究分野を構成している。
いわゆるニューラル・ネットワーク量子状態(Neural-Network Quantum States)は、量子多体系の解の強力な変分計算方法論である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The so-called contemporary AI revolution has reached every corner of the
social, human and natural sciences -- physics included. In the context of
quantum many-body physics, its intersection with machine learning has
configured a high-impact interdisciplinary field of study; with the arise of
recent seminal contributions that have derived in a large number of
publications. One particular research line of such field of study is the
so-called Neural-Network Quantum States, a powerful variational computational
methodology for the solution of quantum many-body systems that has proven to
compete with well-established, traditional formalisms. Here, a systematic
review of literature regarding Neural-Network Quantum States is presented.
- Abstract(参考訳): いわゆる現代AI革命は、物理学を含む社会科学、人間科学、自然科学のあらゆる領域に到達した。
量子多体物理学の文脈において、機械学習との交わりは、多くの出版物から派生した近年のセミナル貢献の出現とともに、高い影響の学際的な研究分野を構成している。
そのような研究分野の特定の研究分野はいわゆるニューラルネットワーク量子状態(neural-network quantum states)であり、量子多体系の解に対する強力な変分計算方法論であり、確立された伝統的な形式主義と競合することが証明されている。
本稿では,ニューラルネットワーク量子状態に関する文献を体系的にレビューする。
関連論文リスト
- Universal Quantum Tomography With Deep Neural Networks [0.0]
純量子状態トモグラフィーと混合量子状態トモグラフィーの両方に対する2つのニューラルネットワークに基づくアプローチを提案する。
提案手法は,実験データから混合量子状態の再構成を行なえることを示す。
論文 参考訳(メタデータ) (2024-07-01T19:09:18Z) - XpookyNet: Advancement in Quantum System Analysis through Convolutional Neural Networks for Detection of Entanglement [0.0]
量子システムに適したカスタムディープ畳み込みニューラルネットワーク(CNN)モデルを導入する。
提案するCNNモデルであるXpookyNetは,複素数データを扱うという課題を効果的に克服する。
まず第一に、量子状態は完全かつ部分的に絡み合った状態を調べるためにより正確に分類されるべきである。
論文 参考訳(メタデータ) (2023-09-07T17:52:43Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
本稿では,量子ネットワークの絡み合いに関する包括的調査を行う。
ネットワーク構造、作業原則、開発段階の詳細な概要を提供する。
また、アーキテクチャ設計、絡み合いに基づくネットワーク問題、標準化など、オープンな研究の方向性を強調している。
論文 参考訳(メタデータ) (2023-07-24T02:48:22Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Physics-Informed Quantum Communication Networks: A Vision Towards the
Quantum Internet [79.8886946157912]
本稿では,量子通信ネットワーク(QCN)の性能を物理インフォームド方式で解析する。
物理インフォームドアプローチの必要性を評価し,実践的なQCNの設計におけるその基本的な役割を解析する。
我々はQCNが量子技術の最先端を活用できる新しい物理インフォームドパフォーマンス指標と制御を同定する。
論文 参考訳(メタデータ) (2022-04-20T05:32:16Z) - Quantum Neural Networks -- Computational Field Theory and Dynamics [0.0]
量子人工ニューラルネットワークの力学系としての形式化が開発されている。
量子コンピュータ科学、量子複雑性研究、量子技術、神経科学にもその意味がある。
論文 参考訳(メタデータ) (2022-03-19T10:37:23Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
量子システムの分離・制御・絡み合いの進歩は、かつての量子力学の興味深い特徴を、破壊的な科学的・技術的進歩のための乗り物へと変えつつある。
本稿では,3つの領域科学理論家の視点から,絡み合い,複雑性,量子シミュレーションのインターフェースについて考察する。
論文 参考訳(メタデータ) (2021-07-10T06:12:06Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
小型地震インバージョン問題を解決するために,D波量子アニールに量子アルゴリズムを適用した。
量子コンピュータによって達成される精度は、少なくとも古典的コンピュータと同程度である。
論文 参考訳(メタデータ) (2020-05-06T14:18:44Z) - Finding Quantum Critical Points with Neural-Network Quantum States [0.0]
本稿では,ニューラルネットワーク量子状態を用いた量子イジングモデルの量子臨界点探索手法を提案する。
我々は、本質的に制限されたボルツマンマシン、トランスファーラーニング、教師なし学習を解析的に構築した。
論文 参考訳(メタデータ) (2020-02-07T04:39:09Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。