Ollivier-Ricci Curvature For Head Pose Estimation From a Single Image
- URL: http://arxiv.org/abs/2204.13006v1
- Date: Wed, 27 Apr 2022 15:20:26 GMT
- Title: Ollivier-Ricci Curvature For Head Pose Estimation From a Single Image
- Authors: Lucia Cascone and Riccardo Distasi and Michele Nappi
- Abstract summary: This paper aims to estimate head pose from a single image by applying notions of network curvature.
In this work, using the geometric notion of Ollivier-Ricci curvature (ORC) on weighted graphs as input to the XGBoost regression model, we show that the intrinsic geometric basis of ORC offers a natural approach.
- Score: 10.842428621768667
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Head pose estimation is a crucial challenge for many real-world applications,
such as attention and human behavior analysis. This paper aims to estimate head
pose from a single image by applying notions of network curvature. In the real
world, many complex networks have groups of nodes that are well connected to
each other with significant functional roles. Similarly, the interactions of
facial landmarks can be represented as complex dynamic systems modeled by
weighted graphs. The functionalities of such systems are therefore
intrinsically linked to the topology and geometry of the underlying graph. In
this work, using the geometric notion of Ollivier-Ricci curvature (ORC) on
weighted graphs as input to the XGBoost regression model, we show that the
intrinsic geometric basis of ORC offers a natural approach to discovering
underlying common structure within a pool of poses. Experiments on the BIWI,
AFLW2000 and Pointing'04 datasets show that the ORC_XGB method performs well
compared to state-of-the-art methods, both landmark-based and image-only.
Related papers
- Str-L Pose: Integrating Point and Structured Line for Relative Pose Estimation in Dual-Graph [45.115555973941255]
Relative pose estimation is crucial for various computer vision applications, including Robotic and Autonomous Driving.
We propose a Geometric Correspondence Graph neural network that integrates point features with extra structured line segments.
This integration of matched points and line segments further exploits the geometry constraints and enhances model performance across different environments.
arXiv Detail & Related papers (2024-08-28T12:33:26Z) - DeepRicci: Self-supervised Graph Structure-Feature Co-Refinement for
Alleviating Over-squashing [72.70197960100677]
Graph Structure Learning (GSL) plays an important role in boosting Graph Neural Networks (GNNs) with a refined graph.
GSL solutions usually focus on structure refinement with task-specific supervision (i.e., node classification) or overlook the inherent weakness of GNNs themselves.
We propose to study self-supervised graph structure-feature co-refinement for effectively alleviating the issue of over-squashing in typical GNNs.
arXiv Detail & Related papers (2024-01-23T14:06:08Z) - Iterative Graph Filtering Network for 3D Human Pose Estimation [5.177947445379688]
Graph convolutional networks (GCNs) have proven to be an effective approach for 3D human pose estimation.
In this paper, we introduce an iterative graph filtering framework for 3D human pose estimation.
Our approach builds upon the idea of iteratively solving graph filtering with Laplacian regularization.
arXiv Detail & Related papers (2023-07-29T20:46:44Z) - Geometry Contrastive Learning on Heterogeneous Graphs [50.58523799455101]
This paper proposes a novel self-supervised learning method, termed as Geometry Contrastive Learning (GCL)
GCL views a heterogeneous graph from Euclidean and hyperbolic perspective simultaneously, aiming to make a strong merger of the ability of modeling rich semantics and complex structures.
Extensive experiments on four benchmarks data sets show that the proposed approach outperforms the strong baselines.
arXiv Detail & Related papers (2022-06-25T03:54:53Z) - Graph Spectral Embedding using the Geodesic Betweeness Centrality [76.27138343125985]
We introduce the Graph Sylvester Embedding (GSE), an unsupervised graph representation of local similarity, connectivity, and global structure.
GSE uses the solution of the Sylvester equation to capture both network structure and neighborhood proximity in a single representation.
arXiv Detail & Related papers (2022-05-07T04:11:23Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
Simplicial complexes can be viewed as high dimensional generalizations of graphs that explicitly encode multi-way ordered relations.
We propose a graph convolutional model for learning functions parametrized by the $k$-homological features of simplicial complexes.
arXiv Detail & Related papers (2021-10-28T14:59:41Z) - Reasoning Graph Networks for Kinship Verification: from Star-shaped to
Hierarchical [85.0376670244522]
We investigate the problem of facial kinship verification by learning hierarchical reasoning graph networks.
We develop a Star-shaped Reasoning Graph Network (S-RGN) to exploit more powerful and flexible capacity.
We also develop a Hierarchical Reasoning Graph Network (H-RGN) to exploit more powerful and flexible capacity.
arXiv Detail & Related papers (2021-09-06T03:16:56Z) - Self-supervised Geometric Perception [96.89966337518854]
Self-supervised geometric perception is a framework to learn a feature descriptor for correspondence matching without any ground-truth geometric model labels.
We show that SGP achieves state-of-the-art performance that is on-par or superior to the supervised oracles trained using ground-truth labels.
arXiv Detail & Related papers (2021-03-04T15:34:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.