Str-L Pose: Integrating Point and Structured Line for Relative Pose Estimation in Dual-Graph
- URL: http://arxiv.org/abs/2408.15750v1
- Date: Wed, 28 Aug 2024 12:33:26 GMT
- Title: Str-L Pose: Integrating Point and Structured Line for Relative Pose Estimation in Dual-Graph
- Authors: Zherong Zhang, Chunyu Lin, Shujuan Huang, Shangrong Yang, Yao Zhao,
- Abstract summary: Relative pose estimation is crucial for various computer vision applications, including Robotic and Autonomous Driving.
We propose a Geometric Correspondence Graph neural network that integrates point features with extra structured line segments.
This integration of matched points and line segments further exploits the geometry constraints and enhances model performance across different environments.
- Score: 45.115555973941255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Relative pose estimation is crucial for various computer vision applications, including Robotic and Autonomous Driving. Current methods primarily depend on selecting and matching feature points prone to incorrect matches, leading to poor performance. Consequently, relying solely on point-matching relationships for pose estimation is a huge challenge. To overcome these limitations, we propose a Geometric Correspondence Graph neural network that integrates point features with extra structured line segments. This integration of matched points and line segments further exploits the geometry constraints and enhances model performance across different environments. We employ the Dual-Graph module and Feature Weighted Fusion Module to aggregate geometric and visual features effectively, facilitating complex scene understanding. We demonstrate our approach through extensive experiments on the DeMoN and KITTI Odometry datasets. The results show that our method is competitive with state-of-the-art techniques.
Related papers
- Multi-Spectral Image Stitching via Spatial Graph Reasoning [52.27796682972484]
We propose a spatial graph reasoning based multi-spectral image stitching method.
We embed multi-scale complementary features from the same view position into a set of nodes.
By introducing long-range coherence along spatial and channel dimensions, the complementarity of pixel relations and channel interdependencies aids in the reconstruction of aligned multi-view features.
arXiv Detail & Related papers (2023-07-31T15:04:52Z) - Ollivier-Ricci Curvature For Head Pose Estimation From a Single Image [10.842428621768667]
This paper aims to estimate head pose from a single image by applying notions of network curvature.
In this work, using the geometric notion of Ollivier-Ricci curvature (ORC) on weighted graphs as input to the XGBoost regression model, we show that the intrinsic geometric basis of ORC offers a natural approach.
arXiv Detail & Related papers (2022-04-27T15:20:26Z) - NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One
Go [109.88509362837475]
We present NeuroMorph, a new neural network architecture that takes as input two 3D shapes.
NeuroMorph produces smooth and point-to-point correspondences between them.
It works well for a large variety of input shapes, including non-isometric pairs from different object categories.
arXiv Detail & Related papers (2021-06-17T12:25:44Z) - Hermitian Symmetric Spaces for Graph Embeddings [0.0]
We learn continuous representations of graphs in spaces of symmetric matrices over C.
These spaces offer a rich geometry that simultaneously admits hyperbolic and Euclidean subspaces.
The proposed models are able to automatically adapt to very dissimilar arrangements without any apriori estimates of graph features.
arXiv Detail & Related papers (2021-05-11T18:14:52Z) - Learning Spatial Context with Graph Neural Network for Multi-Person Pose
Grouping [71.59494156155309]
Bottom-up approaches for image-based multi-person pose estimation consist of two stages: keypoint detection and grouping.
In this work, we formulate the grouping task as a graph partitioning problem, where we learn the affinity matrix with a Graph Neural Network (GNN)
The learned geometry-based affinity is further fused with appearance-based affinity to achieve robust keypoint association.
arXiv Detail & Related papers (2021-04-06T09:21:14Z) - Mutual Graph Learning for Camouflaged Object Detection [31.422775969808434]
A major challenge is that intrinsic similarities between foreground objects and background surroundings make the features extracted by deep model indistinguishable.
We design a novel Mutual Graph Learning model, which generalizes the idea of conventional mutual learning from regular grids to the graph domain.
In contrast to most mutual learning approaches that use a shared function to model all between-task interactions, MGL is equipped with typed functions for handling different complementary relations.
arXiv Detail & Related papers (2021-04-03T10:14:39Z) - Self-supervised Geometric Perception [96.89966337518854]
Self-supervised geometric perception is a framework to learn a feature descriptor for correspondence matching without any ground-truth geometric model labels.
We show that SGP achieves state-of-the-art performance that is on-par or superior to the supervised oracles trained using ground-truth labels.
arXiv Detail & Related papers (2021-03-04T15:34:43Z) - GELATO: Geometrically Enriched Latent Model for Offline Reinforcement
Learning [54.291331971813364]
offline reinforcement learning approaches can be divided into proximal and uncertainty-aware methods.
In this work, we demonstrate the benefit of combining the two in a latent variational model.
Our proposed metrics measure both the quality of out of distribution samples as well as the discrepancy of examples in the data.
arXiv Detail & Related papers (2021-02-22T19:42:40Z) - Representing Deep Neural Networks Latent Space Geometries with Graphs [38.63434325489782]
Deep Learning (DL) has attracted a lot of attention for its ability to reach state-of-the-art performance in many machine learning tasks.
In this work, we show that it is possible to introduce constraints on these latent geometries to address various problems.
arXiv Detail & Related papers (2020-11-14T17:21:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.