論文の概要: Dropout Inference with Non-Uniform Weight Scaling
- arxiv url: http://arxiv.org/abs/2204.13047v1
- Date: Wed, 27 Apr 2022 16:41:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-28 13:07:38.982288
- Title: Dropout Inference with Non-Uniform Weight Scaling
- Title(参考訳): 非均一ウェイトスケーリングによるドロップアウト推論
- Authors: Zhaoyuan Yang and Arpit Jain
- Abstract要約: 正規化としてのドロップアウトは、ニューラルネットワークのトレーニングの過度な適合を防ぐために広く使用されている。
本研究では,いくつかのサブモデルが高バイアスモデルに近づき,一様でないウェイトスケーリングが推論の近似として優れているシナリオを実証する。
- 参考スコア(独自算出の注目度): 6.726255259929496
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Dropout as regularization has been used extensively to prevent overfitting
for training neural networks. During training, units and their connections are
randomly dropped, which could be considered as sampling many different
submodels from the original model. At test time, weight scaling and Monte Carlo
approximation are two widely applied approaches to approximate the outputs.
Both approaches work well practically when all submodels are low-bias complex
learners. However, in this work, we demonstrate scenarios where some submodels
behave closer to high-bias models and a non-uniform weight scaling is a better
approximation for inference.
- Abstract(参考訳): 正規化としてのドロップアウトは、ニューラルネットワークのトレーニングの過剰フィットを防ぐために広く使われている。
トレーニング中、ユニットとその接続はランダムにドロップされ、元のモデルから多くの異なるサブモデルをサンプリングすると見なされる。
テスト時、重量スケーリングとモンテカルロ近似は出力を近似する2つの広く応用されたアプローチである。
どちらのアプローチも、すべてのサブモデルが低バイアスの複雑な学習者である場合にうまく機能する。
しかし、本研究では、いくつかのサブモデルが高バイアスモデルに近づき、一様でないウェイトスケーリングが推論のより優れた近似となるシナリオを実証する。
関連論文リスト
- A Hitchhiker's Guide to Scaling Law Estimation [56.06982415792523]
スケーリング法則は、より少ないパラメータやより少ないトレーニングセットで訓練が容易なモデルから外挿することで、ターゲットとなる機械学習モデルの損失を予測する。
我々は1000以上のスケーリング法則を推定し、新しいモデルファミリーにおけるスケーリング法則を推定するためのベストプラクティスを導出する。
論文 参考訳(メタデータ) (2024-10-15T17:59:10Z) - Weight Scope Alignment: A Frustratingly Easy Method for Model Merging [40.080926444789085]
非I.D.データは平均的なモデル融合にとって大きな課題となる。
本稿では,異なるトレーニング条件下での重量範囲の変化を明らかにする。
幸いなことに、各層のパラメータは基本的にガウス分布に従っており、これは新しく単純な正規化アプローチを刺激している。
論文 参考訳(メタデータ) (2024-08-22T09:13:27Z) - Scalable Ensembling For Mitigating Reward Overoptimisation [24.58937616758007]
ヒューマンフィードバックからの強化学習は、強力な命令追従モデルのための言語モデリングにおける大幅な進歩を可能にした。
ポリシーが学習したプロキシ"報酬モデルに過度に適合する傾向にあるため、これらのモデルの整合性は依然として急進的な課題である。
論文 参考訳(メタデータ) (2024-06-03T05:46:53Z) - Training Trajectories of Language Models Across Scales [99.38721327771208]
言語モデルのスケールアップは、前例のないパフォーマンス向上につながった。
異なるサイズの言語モデルは事前学習中にどのように学習するか?
より大きな言語モデルはなぜ望ましい振る舞いを示すのか?
論文 参考訳(メタデータ) (2022-12-19T19:16:29Z) - Investigating Ensemble Methods for Model Robustness Improvement of Text
Classifiers [66.36045164286854]
既存のバイアス機能を分析し、すべてのケースに最適なモデルが存在しないことを実証します。
適切なバイアスモデルを選択することで、より洗練されたモデル設計でベースラインよりもロバスト性が得られる。
論文 参考訳(メタデータ) (2022-10-28T17:52:10Z) - Model soups: averaging weights of multiple fine-tuned models improves
accuracy without increasing inference time [69.7693300927423]
複数モデルの重み付けを異なるパラメータ構成で微調整することにより,精度とロバスト性が向上することを示す。
モデルスープ手法は,複数の画像分類や自然言語処理タスクにまで拡張されている。
論文 参考訳(メタデータ) (2022-03-10T17:03:49Z) - Optimal Model Averaging: Towards Personalized Collaborative Learning [0.0]
連合学習では、参加ノード間のデータや目的の違いが、各ノードに対してパーソナライズされた機械学習モデルをトレーニングするためのアプローチを動機付けている。
そのようなアプローチの1つは、局所的に訓練されたモデルとグローバルモデルの間の重み付き平均化である。
局所モデルと比較して予測される2乗誤差を減少させるモデル平均化の正の量が常に存在することがわかった。
論文 参考訳(メタデータ) (2021-10-25T13:33:20Z) - No One Representation to Rule Them All: Overlapping Features of Training
Methods [12.58238785151714]
ハイパフォーマンスモデルは、トレーニング方法論に関係なく、同様の予測をする傾向があります。
近年の研究では、大規模なコントラスト学習など、非常に異なるトレーニングテクニックが、競争的に高い精度で実現されている。
これらのモデルはデータの一般化に特化しており、より高いアンサンブル性能をもたらす。
論文 参考訳(メタデータ) (2021-10-20T21:29:49Z) - When in Doubt, Summon the Titans: Efficient Inference with Large Models [80.2673230098021]
本稿では,大規模モデルのモデル化の利点を実現する蒸留に基づく2段階の枠組みを提案する。
簡単な"例のサブセットでのみ正確な予測を行うために、私たちは、大きな教師モデルを使用して、軽量な学生モデルをガイドします。
提案した蒸留法は, 簡単な事例のみを扱うため, 学生規模でより積極的なトレードオフが可能であり, 推論の償却コストを低減できる。
論文 参考訳(メタデータ) (2021-10-19T22:56:49Z) - When Ensembling Smaller Models is More Efficient than Single Large
Models [52.38997176317532]
アンサンブルは高い精度で単一モデルより優れており、計算に要する総FLOPは少ない。
これは、アンサンブルの出力の多様性がより大きなモデルを訓練するよりも効率的であることを示す興味深い観察結果である。
論文 参考訳(メタデータ) (2020-05-01T18:56:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。