Persistent homology analysis of a generalized Aubry-Andr\'{e}-Harper
model
- URL: http://arxiv.org/abs/2204.13276v2
- Date: Fri, 2 Sep 2022 04:53:11 GMT
- Title: Persistent homology analysis of a generalized Aubry-Andr\'{e}-Harper
model
- Authors: Yu He, Shiqi Xia, Dimitris G. Angelakis, Daohong Song, Zhigang Chen,
Daniel Leykam
- Abstract summary: We study how the computational topology technique of persistent homology can be used to characterize phases of a generalized Aubry-Andr'e-Harper model.
The persistent entropy and mean squared lifetime of features obtained using persistent homology behave similarly to conventional measures.
- Score: 6.498012888892141
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Observing critical phases in lattice models is challenging due to the need to
analyze the finite time or size scaling of observables. We study how the
computational topology technique of persistent homology can be used to
characterize phases of a generalized Aubry-Andr\'{e}-Harper model. The
persistent entropy and mean squared lifetime of features obtained using
persistent homology behave similarly to conventional measures (Shannon entropy
and inverse participation ratio) and can distinguish localized, extended, and
crticial phases. However, we find that the persistent entropy also clearly
distinguishes ordered from disordered regimes of the model. The persistent
homology approach can be applied to both the energy eigenstates and the
wavepacket propagation dynamics.
Related papers
- Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
We study the theoretical aspects of score-based discrete diffusion models under the Continuous Time Markov Chain (CTMC) framework.
We introduce a discrete-time sampling algorithm in the general state space $[S]d$ that utilizes score estimators at predefined time points.
Our convergence analysis employs a Girsanov-based method and establishes key properties of the discrete score function.
arXiv Detail & Related papers (2024-10-03T09:07:13Z) - Confinement in the Transverse Field Ising model on the Heavy Hex lattice [0.0]
We study the emergence of confinement in the transverse field Ising model on a decorated hexagonal lattice.
We show how a quench from a broken symmetry state leads to striking nonthermal behaviour underpinned by persistent oscillations and saturation of the entanglement entropy.
arXiv Detail & Related papers (2024-02-02T16:50:20Z) - Characterizing the spontaneous collapse of a wavefunction through
entropy production [0.0]
We investigate the phenomenology leading to the non-conservation of energy of the continuous spontaneous localization (CSL) model.
We use such framework to assess the equilibration process entailed by the dissipative formulation of the model (dCSL)
We show that the CSL model violates Clausius law, as it exhibits a negative entropy production rate.
arXiv Detail & Related papers (2023-10-19T12:10:52Z) - Signatures of a quantum phase transition on a single-mode bosonic model [0.0]
Equilibrium phase transitions emerge from the microscopic behavior of many-body systems.
They can be defined through the non-analytic behavior of thermodynamic potentials in the thermodynamic limit.
Taking previous ideas to the extreme, we argue that such a limit can be defined even in non-extended systems.
arXiv Detail & Related papers (2023-03-22T20:14:45Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Quantitative analysis of phase transitions in two-dimensional XY models
using persistent homology [0.0]
We use persistent homology and persistence images as an observable of three different variants of the two-dimensional XY model.
For each model we successfully identify its phase transition(s) and are able to get an accurate determination of the critical temperatures and critical exponents of the correlation length.
arXiv Detail & Related papers (2021-09-22T18:24:54Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Emergent fractal phase in energy stratified random models [0.0]
We study the effects of partial correlations in kinetic hopping terms of long-range random matrix models on their localization properties.
We show that any deviation from the completely correlated case leads to the emergent non-ergodic delocalization in the system.
arXiv Detail & Related papers (2021-06-07T18:00:01Z) - Determination of the critical exponents in dissipative phase
transitions: Coherent anomaly approach [51.819912248960804]
We propose a generalization of the coherent anomaly method to extract the critical exponents of a phase transition occurring in the steady-state of an open quantum many-body system.
arXiv Detail & Related papers (2021-03-12T13:16:18Z) - The Connection between Discrete- and Continuous-Time Descriptions of
Gaussian Continuous Processes [60.35125735474386]
We show that discretizations yielding consistent estimators have the property of invariance under coarse-graining'
This result explains why combining differencing schemes for derivatives reconstruction and local-in-time inference approaches does not work for time series analysis of second or higher order differential equations.
arXiv Detail & Related papers (2021-01-16T17:11:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.