Reconciling the Quality vs Popularity Dichotomy in Online Cultural
Markets
- URL: http://arxiv.org/abs/2204.13536v1
- Date: Thu, 28 Apr 2022 14:36:11 GMT
- Title: Reconciling the Quality vs Popularity Dichotomy in Online Cultural
Markets
- Authors: Rossano Gaeta, Michele Garetto, Giancarlo Ruffo, and Alessandro
Flammini
- Abstract summary: We propose a model of an idealized online cultural market in which $N$ items, endowed with a hidden quality metric, are recommended to users by a ranking algorithm possibly biased by the current items' popularity.
Our goal is to better understand the underlying mechanisms of the well-known fact that popularity bias can prevent higher-quality items from becoming more popular than lower-quality items, producing an undesirable misalignment between quality and popularity rankings.
- Score: 62.146882023375746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a simple model of an idealized online cultural market in which $N$
items, endowed with a hidden quality metric, are recommended to users by a
ranking algorithm possibly biased by the current items' popularity. Our goal is
to better understand the underlying mechanisms of the well-known fact that
popularity bias can prevent higher-quality items from becoming more popular
than lower-quality items, producing an undesirable misalignment between quality
and popularity rankings. We do so under the assumption that users, having
limited time/attention, are able to discriminate the best-quality only within a
random subset of the items. We discover the existence of a harmful regime in
which improper use of popularity can seriously compromise the emergence of
quality, and a benign regime in which wise use of popularity, coupled with a
small discrimination effort on behalf of users, guarantees the perfect
alignment of quality and popularity ranking. Our findings clarify the effects
of algorithmic popularity bias on quality outcomes, and may inform the design
of more principled mechanisms for techno-social cultural markets.
Related papers
- Large Language Models as Recommender Systems: A Study of Popularity Bias [46.17953988777199]
Popular items are disproportionately recommended, overshadowing less popular but potentially relevant items.
Recent advancements have seen the integration of general-purpose Large Language Models into recommender systems.
Our study explores whether LLMs contribute to or can alleviate popularity bias in recommender systems.
arXiv Detail & Related papers (2024-06-03T12:53:37Z) - Popularity-Aware Alignment and Contrast for Mitigating Popularity Bias [34.006766098392525]
Collaborative Filtering (CF) typically suffers from the challenge of popularity bias due to the uneven distribution of items in real-world datasets.
This bias leads to a significant accuracy gap between popular and unpopular items.
We propose Popularity-Aware Alignment and Contrast (PAAC) to address two challenges.
arXiv Detail & Related papers (2024-05-31T09:14:48Z) - Fairness Through Domain Awareness: Mitigating Popularity Bias For Music
Discovery [56.77435520571752]
We explore the intrinsic relationship between music discovery and popularity bias.
We propose a domain-aware, individual fairness-based approach which addresses popularity bias in graph neural network (GNNs) based recommender systems.
Our approach uses individual fairness to reflect a ground truth listening experience, i.e., if two songs sound similar, this similarity should be reflected in their representations.
arXiv Detail & Related papers (2023-08-28T14:12:25Z) - Ranking with Popularity Bias: User Welfare under Self-Amplification
Dynamics [19.59766711993837]
We propose and theoretically analyze a general mechanism by which item popularity, item quality, and position bias jointly impact user choice.
We show that naive popularity-biased recommenders induce linear regret by conflating item quality and popularity.
arXiv Detail & Related papers (2023-05-24T22:38:19Z) - Competition, Alignment, and Equilibria in Digital Marketplaces [97.03797129675951]
We study a duopoly market where platform actions are bandit algorithms and the two platforms compete for user participation.
Our main finding is that competition in this market does not perfectly align market outcomes with user utility.
arXiv Detail & Related papers (2022-08-30T17:43:58Z) - The Unfairness of Popularity Bias in Book Recommendation [0.0]
Popularity bias refers to the problem that popular items are recommended frequently while less popular items are recommended rarely or not at all.
We analyze the well-known Book-Crossing dataset and define three user groups based on their tendency towards popular items.
Our results indicate that most state-of-the-art recommendation algorithms suffer from popularity bias in the book domain.
arXiv Detail & Related papers (2022-02-27T20:21:46Z) - An Adaptive Boosting Technique to Mitigate Popularity Bias in
Recommender System [1.5800354337004194]
A typical accuracy measure is biased towards popular items, i.e., it promotes better accuracy for popular items compared to non-popular items.
This paper considers a metric that measures the popularity bias as the difference in error on popular items and non-popular items.
Motivated by the fair boosting algorithm on classification, we propose an algorithm that reduces the popularity bias present in the data.
arXiv Detail & Related papers (2021-09-13T03:04:55Z) - User-centered Evaluation of Popularity Bias in Recommender Systems [4.30484058393522]
Recommendation and ranking systems suffer from popularity bias; the tendency of the algorithm to favor a few popular items while under-representing the majority of other items.
In this paper, we show the limitations of the existing metrics to evaluate popularity bias mitigation when we want to assess these algorithms from the users' perspective.
We present an effective approach that mitigates popularity bias from the user-centered point of view.
arXiv Detail & Related papers (2021-03-10T22:12:51Z) - A novel auction system for selecting advertisements in Real-Time bidding [68.8204255655161]
Real-Time Bidding is a new Internet advertising system that has become very popular in recent years.
We propose an alternative betting system with a new approach that not only considers the economic aspect but also other relevant factors for the functioning of the advertising system.
arXiv Detail & Related papers (2020-10-22T18:36:41Z) - Political audience diversity and news reliability in algorithmic ranking [54.23273310155137]
We propose using the political diversity of a website's audience as a quality signal.
Using news source reliability ratings from domain experts and web browsing data from a diverse sample of 6,890 U.S. citizens, we first show that websites with more extreme and less politically diverse audiences have lower journalistic standards.
arXiv Detail & Related papers (2020-07-16T02:13:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.