Disentangling Popularity and Quality: An Edge Classification Approach for Fair Recommendation
- URL: http://arxiv.org/abs/2502.15699v1
- Date: Mon, 06 Jan 2025 07:31:52 GMT
- Title: Disentangling Popularity and Quality: An Edge Classification Approach for Fair Recommendation
- Authors: Nemat Gholinejad, Mostafa Haghir Chehreghani,
- Abstract summary: Graph neural networks (GNNs) have proven to be an effective tool for enhancing the performance of recommender systems.<n>We propose a GNN-based recommendation model that disentangles popularity and quality to address this issue.
- Score: 1.0128808054306186
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph neural networks (GNNs) have proven to be an effective tool for enhancing the performance of recommender systems. However, these systems often suffer from popularity bias, leading to an unfair advantage for frequently interacted items, while overlooking high-quality but less popular items. In this paper, we propose a GNN-based recommendation model that disentangles popularity and quality to address this issue. Our approach introduces an edge classification technique to differentiate between popularity bias and genuine quality disparities among items. Furthermore, it uses cost-sensitive learning to adjust the misclassification penalties, ensuring that underrepresented yet relevant items are not unfairly disregarded. Experimental results demonstrate improvements in fairness metrics by approximately 2-74%, while maintaining competitive accuracy, with only minor variations compared to state-of-the-art methods.
Related papers
- Correcting for Popularity Bias in Recommender Systems via Item Loss Equalization [1.7771454131646311]
A small set of popular items dominate the recommendation results due to their high interaction rates.
This phenomenon disproportionately benefits users with mainstream tastes while neglecting those with niche interests.
We propose an in-processing approach to address this issue by intervening in the training process of recommendation models.
arXiv Detail & Related papers (2024-10-07T08:34:18Z) - Going Beyond Popularity and Positivity Bias: Correcting for Multifactorial Bias in Recommender Systems [74.47680026838128]
Two typical forms of bias in user interaction data with recommender systems (RSs) are popularity bias and positivity bias.
We consider multifactorial selection bias affected by both item and rating value factors.
We propose smoothing and alternating gradient descent techniques to reduce variance and improve the robustness of its optimization.
arXiv Detail & Related papers (2024-04-29T12:18:21Z) - Learning Fair Ranking Policies via Differentiable Optimization of
Ordered Weighted Averages [55.04219793298687]
This paper shows how efficiently-solvable fair ranking models can be integrated into the training loop of Learning to Rank.
In particular, this paper is the first to show how to backpropagate through constrained optimizations of OWA objectives, enabling their use in integrated prediction and decision models.
arXiv Detail & Related papers (2024-02-07T20:53:53Z) - Metrics for popularity bias in dynamic recommender systems [0.0]
Biased recommendations may lead to decisions that can potentially have adverse effects on individuals, sensitive user groups, and society.
This paper focuses on quantifying popularity bias that stems directly from the output of RecSys models.
Four metrics to quantify popularity bias in RescSys over time in dynamic setting across different sensitive user groups have been proposed.
arXiv Detail & Related papers (2023-10-12T16:15:30Z) - Ranking with Popularity Bias: User Welfare under Self-Amplification
Dynamics [19.59766711993837]
We propose and theoretically analyze a general mechanism by which item popularity, item quality, and position bias jointly impact user choice.
We show that naive popularity-biased recommenders induce linear regret by conflating item quality and popularity.
arXiv Detail & Related papers (2023-05-24T22:38:19Z) - Reconciling the Quality vs Popularity Dichotomy in Online Cultural
Markets [62.146882023375746]
We propose a model of an idealized online cultural market in which $N$ items, endowed with a hidden quality metric, are recommended to users by a ranking algorithm possibly biased by the current items' popularity.
Our goal is to better understand the underlying mechanisms of the well-known fact that popularity bias can prevent higher-quality items from becoming more popular than lower-quality items, producing an undesirable misalignment between quality and popularity rankings.
arXiv Detail & Related papers (2022-04-28T14:36:11Z) - Cross Pairwise Ranking for Unbiased Item Recommendation [57.71258289870123]
We develop a new learning paradigm named Cross Pairwise Ranking (CPR)
CPR achieves unbiased recommendation without knowing the exposure mechanism.
We prove in theory that this way offsets the influence of user/item propensity on the learning.
arXiv Detail & Related papers (2022-04-26T09:20:27Z) - Unbiased Pairwise Learning to Rank in Recommender Systems [4.058828240864671]
Unbiased learning to rank algorithms are appealing candidates and have already been applied in many applications with single categorical labels.
We propose a novel unbiased LTR algorithm to tackle the challenges, which innovatively models position bias in the pairwise fashion.
Experiment results on public benchmark datasets and internal live traffic show the superior results of the proposed method for both categorical and continuous labels.
arXiv Detail & Related papers (2021-11-25T06:04:59Z) - An Adaptive Boosting Technique to Mitigate Popularity Bias in
Recommender System [1.5800354337004194]
A typical accuracy measure is biased towards popular items, i.e., it promotes better accuracy for popular items compared to non-popular items.
This paper considers a metric that measures the popularity bias as the difference in error on popular items and non-popular items.
Motivated by the fair boosting algorithm on classification, we propose an algorithm that reduces the popularity bias present in the data.
arXiv Detail & Related papers (2021-09-13T03:04:55Z) - User-centered Evaluation of Popularity Bias in Recommender Systems [4.30484058393522]
Recommendation and ranking systems suffer from popularity bias; the tendency of the algorithm to favor a few popular items while under-representing the majority of other items.
In this paper, we show the limitations of the existing metrics to evaluate popularity bias mitigation when we want to assess these algorithms from the users' perspective.
We present an effective approach that mitigates popularity bias from the user-centered point of view.
arXiv Detail & Related papers (2021-03-10T22:12:51Z) - Fairness-Aware Explainable Recommendation over Knowledge Graphs [73.81994676695346]
We analyze different groups of users according to their level of activity, and find that bias exists in recommendation performance between different groups.
We show that inactive users may be more susceptible to receiving unsatisfactory recommendations, due to insufficient training data for the inactive users.
We propose a fairness constrained approach via re-ranking to mitigate this problem in the context of explainable recommendation over knowledge graphs.
arXiv Detail & Related papers (2020-06-03T05:04:38Z) - Contrastive Learning for Debiased Candidate Generation in Large-Scale
Recommender Systems [84.3996727203154]
We show that a popular choice of contrastive loss is equivalent to reducing the exposure bias via inverse propensity weighting.
We further improve upon CLRec and propose Multi-CLRec, for accurate multi-intention aware bias reduction.
Our methods have been successfully deployed in Taobao, where at least four-month online A/B tests and offline analyses demonstrate its substantial improvements.
arXiv Detail & Related papers (2020-05-20T08:15:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.