PhysioGAN: Training High Fidelity Generative Model for Physiological
Sensor Readings
- URL: http://arxiv.org/abs/2204.13597v1
- Date: Mon, 25 Apr 2022 07:38:43 GMT
- Title: PhysioGAN: Training High Fidelity Generative Model for Physiological
Sensor Readings
- Authors: Moustafa Alzantot, Luis Garcia, Mani Srivastava
- Abstract summary: We present PHYSIOGAN, a generative model to produce high fidelity synthetic physiological sensor data readings.
We evaluate it against the state-of-the-art techniques using two different real-world datasets: ECG classification and activity recognition from motion sensors datasets.
- Score: 6.029263679246354
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative models such as the variational autoencoder (VAE) and the
generative adversarial networks (GAN) have proven to be incredibly powerful for
the generation of synthetic data that preserves statistical properties and
utility of real-world datasets, especially in the context of image and natural
language text. Nevertheless, until now, there has no successful demonstration
of how to apply either method for generating useful physiological sensory data.
The state-of-the-art techniques in this context have achieved only limited
success. We present PHYSIOGAN, a generative model to produce high fidelity
synthetic physiological sensor data readings. PHYSIOGAN consists of an encoder,
decoder, and a discriminator. We evaluate PHYSIOGAN against the
state-of-the-art techniques using two different real-world datasets: ECG
classification and activity recognition from motion sensors datasets. We
compare PHYSIOGAN to the baseline models not only the accuracy of class
conditional generation but also the sample diversity and sample novelty of the
synthetic datasets. We prove that PHYSIOGAN generates samples with higher
utility than other generative models by showing that classification models
trained on only synthetic data generated by PHYSIOGAN have only 10% and 20%
decrease in their classification accuracy relative to classification models
trained on the real data. Furthermore, we demonstrate the use of PHYSIOGAN for
sensor data imputation in creating plausible results.
Related papers
- Synthetic Image Learning: Preserving Performance and Preventing Membership Inference Attacks [5.0243930429558885]
This paper introduces Knowledge Recycling (KR), a pipeline designed to optimise the generation and use of synthetic data for training downstream classifiers.
At the heart of this pipeline is Generative Knowledge Distillation (GKD), the proposed technique that significantly improves the quality and usefulness of the information.
The results show a significant reduction in the performance gap between models trained on real and synthetic data, with models based on synthetic data outperforming those trained on real data in some cases.
arXiv Detail & Related papers (2024-07-22T10:31:07Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Derm-T2IM: Harnessing Synthetic Skin Lesion Data via Stable Diffusion
Models for Enhanced Skin Disease Classification using ViT and CNN [1.0499611180329804]
We aim to incorporate enhanced data transformation techniques by extending the recent success of few-shot learning.
We investigate the impact of incorporating newly generated synthetic data into the training pipeline of state-of-art machine learning models.
arXiv Detail & Related papers (2024-01-10T13:46:03Z) - On the Stability of Iterative Retraining of Generative Models on their own Data [56.153542044045224]
We study the impact of training generative models on mixed datasets.
We first prove the stability of iterative training under the condition that the initial generative models approximate the data distribution well enough.
We empirically validate our theory on both synthetic and natural images by iteratively training normalizing flows and state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-09-30T16:41:04Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
We show how the generative process affects the downstream ML task.
We introduce Deep Generative Ensemble (DGE) to approximate the posterior distribution over the generative process model parameters.
arXiv Detail & Related papers (2023-05-16T07:30:29Z) - Unified Framework for Histopathology Image Augmentation and Classification via Generative Models [6.404713841079193]
We propose an innovative unified framework that integrates the data generation and model training stages into a unified process.
Our approach utilizes a pure Vision Transformer (ViT)-based conditional Generative Adversarial Network (cGAN) model to simultaneously handle both image synthesis and classification.
Our experiments show that our unified synthetic augmentation framework consistently enhances the performance of histopathology image classification models.
arXiv Detail & Related papers (2022-12-20T03:40:44Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
We study whether and how synthetic images generated from state-of-the-art text-to-image generation models can be used for image recognition tasks.
We showcase the powerfulness and shortcomings of synthetic data from existing generative models, and propose strategies for better applying synthetic data for recognition tasks.
arXiv Detail & Related papers (2022-10-14T06:54:24Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
We propose a novel scheme to Condense dataset by Aligning FEatures (CAFE)
At the heart of our approach is an effective strategy to align features from the real and synthetic data across various scales.
We validate the proposed CAFE across various datasets, and demonstrate that it generally outperforms the state of the art.
arXiv Detail & Related papers (2022-03-03T05:58:49Z) - Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited
Data [125.7135706352493]
Generative adversarial networks (GANs) typically require ample data for training in order to synthesize high-fidelity images.
Recent studies have shown that training GANs with limited data remains formidable due to discriminator overfitting.
This paper introduces a novel strategy called Adaptive Pseudo Augmentation (APA) to encourage healthy competition between the generator and the discriminator.
arXiv Detail & Related papers (2021-11-12T18:13:45Z) - On the use of automatically generated synthetic image datasets for
benchmarking face recognition [2.0196229393131726]
Recent advances in Generative Adversarial Networks (GANs) provide a pathway to replace real datasets by synthetic datasets.
Recent advances in Generative Adversarial Networks (GANs) to synthesize realistic face images provide a pathway to replace real datasets by synthetic datasets.
benchmarking results on the synthetic dataset are a good substitution, often providing error rates and system ranking similar to the benchmarking on the real dataset.
arXiv Detail & Related papers (2021-06-08T09:54:02Z) - Synthetic Data and Hierarchical Object Detection in Overhead Imagery [0.0]
We develop novel synthetic data generation and augmentation techniques for enhancing low/zero-sample learning in satellite imagery.
To test the effectiveness of synthetic imagery, we employ it in the training of detection models and our two stage model, and evaluate the resulting models on real satellite images.
arXiv Detail & Related papers (2021-01-29T22:52:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.