Synthetic Data Generation by Supervised Neural Gas Network for Physiological Emotion Recognition Data
- URL: http://arxiv.org/abs/2501.16353v1
- Date: Sun, 19 Jan 2025 15:34:05 GMT
- Title: Synthetic Data Generation by Supervised Neural Gas Network for Physiological Emotion Recognition Data
- Authors: S. Muhammad Hossein Mousavi,
- Abstract summary: This study introduces an innovative approach to synthetic data generation using a Supervised Neural Gas (SNG) network.
The SNG efficiently processes the input data, creating synthetic instances that closely mimic the original data distributions.
- Score: 0.0
- License:
- Abstract: Data scarcity remains a significant challenge in the field of emotion recognition using physiological signals, as acquiring comprehensive and diverse datasets is often prevented by privacy concerns and logistical constraints. This limitation restricts the development and generalization of robust emotion recognition models, making the need for effective synthetic data generation methods more critical. Emotion recognition from physiological signals such as EEG, ECG, and GSR plays a pivotal role in enhancing human-computer interaction and understanding human affective states. Utilizing these signals, this study introduces an innovative approach to synthetic data generation using a Supervised Neural Gas (SNG) network, which has demonstrated noteworthy speed advantages over established models like Conditional VAE, Conditional GAN, diffusion model, and Variational LSTM. The Neural Gas network, known for its adaptability in organizing data based on topological and feature-space proximity, provides a robust framework for generating real-world-like synthetic datasets that preserve the intrinsic patterns of physiological emotion data. Our implementation of the SNG efficiently processes the input data, creating synthetic instances that closely mimic the original data distributions, as demonstrated through comparative accuracy assessments. In experiments, while our approach did not universally outperform all models, it achieved superior performance against most of the evaluated models and offered significant improvements in processing time. These outcomes underscore the potential of using SNG networks for fast, efficient, and effective synthetic data generation in emotion recognition applications.
Related papers
- Exploring the Impact of Synthetic Data on Human Gesture Recognition Tasks Using GANs [0.0]
This study is the first to explore the feasibility of synthesizing motion gestures for allergic rhinitis from wearable IoT device data using Generative Adversarial Networks (GANs)
We also focus on these AI models' performance in terms of fidelity, diversity, and privacy.
arXiv Detail & Related papers (2024-12-09T11:15:47Z) - Second FRCSyn-onGoing: Winning Solutions and Post-Challenge Analysis to Improve Face Recognition with Synthetic Data [104.30479583607918]
2nd FRCSyn-onGoing challenge is based on the 2nd Face Recognition Challenge in the Era of Synthetic Data (FRCSyn), originally launched at CVPR 2024.
We focus on exploring the use of synthetic data both individually and in combination with real data to solve current challenges in face recognition.
arXiv Detail & Related papers (2024-12-02T11:12:01Z) - Enhancing EEG Signal Generation through a Hybrid Approach Integrating Reinforcement Learning and Diffusion Models [6.102274021710727]
This study introduces an innovative approach to the synthesis of Electroencephalogram (EEG) signals by integrating diffusion models with reinforcement learning.
Our methodology enhances the generation of EEG signals with detailed temporal and spectral features, enriching the authenticity and diversity of synthetic datasets.
arXiv Detail & Related papers (2024-09-14T07:22:31Z) - Synthetic Image Learning: Preserving Performance and Preventing Membership Inference Attacks [5.0243930429558885]
This paper introduces Knowledge Recycling (KR), a pipeline designed to optimise the generation and use of synthetic data for training downstream classifiers.
At the heart of this pipeline is Generative Knowledge Distillation (GKD), the proposed technique that significantly improves the quality and usefulness of the information.
The results show a significant reduction in the performance gap between models trained on real and synthetic data, with models based on synthetic data outperforming those trained on real data in some cases.
arXiv Detail & Related papers (2024-07-22T10:31:07Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
The success of AI models relies on the availability of large, diverse, and high-quality datasets.
Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns.
arXiv Detail & Related papers (2024-04-11T06:34:17Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - Synthesizing Affective Neurophysiological Signals Using Generative
Models: A Review Paper [28.806992102323324]
The integration of emotional intelligence in machines is an important step in advancing human-computer interaction.
The scarcity of public affective datasets presents a challenge.
We emphasize the use of generative models to address this issue in neurophysiological signals.
arXiv Detail & Related papers (2023-06-05T08:38:30Z) - Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances [76.34037366117234]
We introduce a new dataset called Robot Control Gestures (RoCoG-v2)
The dataset is composed of both real and synthetic videos from seven gesture classes.
We present results using state-of-the-art action recognition and domain adaptation algorithms.
arXiv Detail & Related papers (2023-03-17T23:23:55Z) - PhysioGAN: Training High Fidelity Generative Model for Physiological
Sensor Readings [6.029263679246354]
We present PHYSIOGAN, a generative model to produce high fidelity synthetic physiological sensor data readings.
We evaluate it against the state-of-the-art techniques using two different real-world datasets: ECG classification and activity recognition from motion sensors datasets.
arXiv Detail & Related papers (2022-04-25T07:38:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.