Triformer: Triangular, Variable-Specific Attentions for Long Sequence
Multivariate Time Series Forecasting--Full Version
- URL: http://arxiv.org/abs/2204.13767v1
- Date: Thu, 28 Apr 2022 20:41:49 GMT
- Title: Triformer: Triangular, Variable-Specific Attentions for Long Sequence
Multivariate Time Series Forecasting--Full Version
- Authors: Razvan-Gabriel Cirstea, Chenjuan Guo, Bin Yang, Tung Kieu, Xuanyi
Dong, Shirui Pan
- Abstract summary: We propose a triangular, variable-specific attention to ensure high efficiency and accuracy.
We show that Triformer outperforms state-of-the-art methods w.r.t. both accuracy and efficiency.
- Score: 50.43914511877446
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A variety of real-world applications rely on far future information to make
decisions, thus calling for efficient and accurate long sequence multivariate
time series forecasting. While recent attention-based forecasting models show
strong abilities in capturing long-term dependencies, they still suffer from
two key limitations. First, canonical self attention has a quadratic complexity
w.r.t. the input time series length, thus falling short in efficiency. Second,
different variables' time series often have distinct temporal dynamics, which
existing studies fail to capture, as they use the same model parameter space,
e.g., projection matrices, for all variables' time series, thus falling short
in accuracy. To ensure high efficiency and accuracy, we propose Triformer, a
triangular, variable-specific attention. (i) Linear complexity: we introduce a
novel patch attention with linear complexity. When stacking multiple layers of
the patch attentions, a triangular structure is proposed such that the layer
sizes shrink exponentially, thus maintaining linear complexity. (ii)
Variable-specific parameters: we propose a light-weight method to enable
distinct sets of model parameters for different variables' time series to
enhance accuracy without compromising efficiency and memory usage. Strong
empirical evidence on four datasets from multiple domains justifies our design
choices, and it demonstrates that Triformer outperforms state-of-the-art
methods w.r.t. both accuracy and efficiency. This is an extended version of
"Triformer: Triangular, Variable-Specific Attentions for Long Sequence
Multivariate Time Series Forecasting", to appear in IJCAI 2022 [Cirstea et al.,
2022a], including additional experimental results.
Related papers
- Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
We present Timer-XL, a generative Transformer for unified time series forecasting.
Timer-XL achieves state-of-the-art performance across challenging forecasting benchmarks through a unified approach.
arXiv Detail & Related papers (2024-10-07T07:27:39Z) - DeepLINK-T: deep learning inference for time series data using knockoffs and LSTM [7.831716013866564]
This study introduces a novel method, Deep Learning Inference using Knockoffs for Time series data (DeepLink-T)
It focuses on the selection of significant time series variables in regression while controlling the false discovery rate (FDR) at a predetermined level.
Three key ingredients for DeepLink-T are 1) a Long Short-Term Memory (LSTM) autoencoder for generating time series knockoff variables, 2) an LSTM prediction network using both original and knockoff variables, and 3) the application of the knockoffs framework for variable selection with FDR control.
arXiv Detail & Related papers (2024-04-05T17:47:50Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - DBA: Efficient Transformer with Dynamic Bilinear Low-Rank Attention [53.02648818164273]
We present an efficient yet effective attention mechanism, namely the Dynamic Bilinear Low-Rank Attention (DBA)
DBA compresses the sequence length by input-sensitive dynamic projection matrices and achieves linear time and space complexity.
Experiments over tasks with diverse sequence length conditions show that DBA achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-11-24T03:06:36Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
gait recognition in the wild is a more practical problem that has attracted the attention of the community of multimedia and computer vision.
This paper presents a novel multi-hop temporal switch method to achieve effective temporal modeling of gait patterns in real-world scenes.
arXiv Detail & Related papers (2022-09-01T10:46:09Z) - Sketching as a Tool for Understanding and Accelerating Self-attention
for Long Sequences [52.6022911513076]
Transformer-based models are not efficient in processing long sequences due to the quadratic space and time complexity of the self-attention modules.
We propose Linformer and Informer to reduce the quadratic complexity to linear (modulo logarithmic factors) via low-dimensional projection and row selection.
Based on the theoretical analysis, we propose Skeinformer to accelerate self-attention and further improve the accuracy of matrix approximation to self-attention.
arXiv Detail & Related papers (2021-12-10T06:58:05Z) - Informer: Beyond Efficient Transformer for Long Sequence Time-Series
Forecasting [25.417560221400347]
Long sequence time-series forecasting (LSTF) demands a high prediction capacity.
Recent studies have shown the potential of Transformer to increase the prediction capacity.
We design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics.
arXiv Detail & Related papers (2020-12-14T11:43:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.