ExSum: From Local Explanations to Model Understanding
- URL: http://arxiv.org/abs/2205.00130v1
- Date: Sat, 30 Apr 2022 02:07:20 GMT
- Title: ExSum: From Local Explanations to Model Understanding
- Authors: Yilun Zhou, Marco Tulio Ribeiro, Julie Shah
- Abstract summary: Interpretability methods are developed to understand the working mechanisms of black-box models.
Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them.
We introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding.
- Score: 6.23934576145261
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interpretability methods are developed to understand the working mechanisms
of black-box models, which is crucial to their responsible deployment.
Fulfilling this goal requires both that the explanations generated by these
methods are correct and that people can easily and reliably understand them.
While the former has been addressed in prior work, the latter is often
overlooked, resulting in informal model understanding derived from a handful of
local explanations. In this paper, we introduce explanation summary (ExSum), a
mathematical framework for quantifying model understanding, and propose metrics
for its quality assessment. On two domains, ExSum highlights various
limitations in the current practice, helps develop accurate model
understanding, and reveals easily overlooked properties of the model. We also
connect understandability to other properties of explanations such as human
alignment, robustness, and counterfactual minimality and plausibility.
Related papers
- Explainability for Machine Learning Models: From Data Adaptability to
User Perception [0.8702432681310401]
This thesis explores the generation of local explanations for already deployed machine learning models.
It aims to identify optimal conditions for producing meaningful explanations considering both data and user requirements.
arXiv Detail & Related papers (2024-02-16T18:44:37Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
We evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development.
To our surprise, we did not find evidence of significant improvement on tasks when users were provided with any of the saliency maps.
These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
arXiv Detail & Related papers (2023-12-10T23:13:23Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Understanding Post-hoc Explainers: The Case of Anchors [6.681943980068051]
We present a theoretical analysis of a rule-based interpretability method that highlights a small set of words to explain a text's decision.
After formalizing its algorithm and providing useful insights, we demonstrate mathematically that Anchors produces meaningful results.
arXiv Detail & Related papers (2023-03-15T17:56:34Z) - Interpretability in the Wild: a Circuit for Indirect Object
Identification in GPT-2 small [68.879023473838]
We present an explanation for how GPT-2 small performs a natural language task called indirect object identification (IOI)
To our knowledge, this investigation is the largest end-to-end attempt at reverse-engineering a natural behavior "in the wild" in a language model.
arXiv Detail & Related papers (2022-11-01T17:08:44Z) - On the Objective Evaluation of Post Hoc Explainers [10.981508361941335]
Modern trends in machine learning research have led to algorithms that are increasingly intricate to the degree that they are considered to be black boxes.
In an effort to reduce the opacity of decisions, methods have been proposed to construe the inner workings of such models in a human-comprehensible manner.
We propose a framework for the evaluation of post hoc explainers on ground truth that is directly derived from the additive structure of a model.
arXiv Detail & Related papers (2021-06-15T19:06:51Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - The Struggles of Feature-Based Explanations: Shapley Values vs. Minimal
Sufficient Subsets [61.66584140190247]
We show that feature-based explanations pose problems even for explaining trivial models.
We show that two popular classes of explainers, Shapley explainers and minimal sufficient subsets explainers, target fundamentally different types of ground-truth explanations.
arXiv Detail & Related papers (2020-09-23T09:45:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.