Dynamic Curriculum Learning for Great Ape Detection in the Wild
- URL: http://arxiv.org/abs/2205.00275v1
- Date: Sat, 30 Apr 2022 14:02:52 GMT
- Title: Dynamic Curriculum Learning for Great Ape Detection in the Wild
- Authors: Xinyu Yang, Tilo Burghardt, Majid Mirmehdi
- Abstract summary: We propose an end-to-end curriculum learning approach to improve detector construction in real-world jungle environments.
In contrast to previous semi-supervised methods, our approach gradually improves detection quality by steering training towards self-reinforcement.
We show that such virtuous dynamics and controls can avoid learning collapse and gradually tie detector adjustments to higher model quality.
- Score: 14.212559301656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel end-to-end curriculum learning approach that leverages
large volumes of unlabelled great ape camera trap footage to improve supervised
species detector construction in challenging real-world jungle environments. In
contrast to previous semi-supervised methods, our approach gradually improves
detection quality by steering training towards virtuous self-reinforcement. To
achieve this, we propose integrating pseudo-labelling with dynamic curriculum
learning policies. We show that such dynamics and controls can avoid learning
collapse and gradually tie detector adjustments to higher model quality. We
provide theoretical arguments and ablations, and confirm significant
performance improvements against various state-of-the-art systems when
evaluating on the Extended PanAfrican Dataset holding several thousand camera
trap videos of great apes. We note that system performance is strongest for
smaller labelled ratios, which are common in ecological applications. Our
approach, although designed with wildlife data in mind, also shows competitive
benchmarks for generic object detection in the MS-COCO dataset, indicating
wider applicability of introduced concepts. The code is available at
https://github.com/youshyee/DCL-Detection.
Related papers
- In-Situ Fine-Tuning of Wildlife Models in IoT-Enabled Camera Traps for Efficient Adaptation [8.882680489254923]
WildFit reconciles the conflicting goals of achieving high domain generalization performance and ensuring efficient inference for camera trap applications.
Background-aware data synthesis generates training images representing the new domain by blending background images with animal images from the source domain.
Our evaluation across multiple camera trap datasets demonstrates that WildFit achieves significant improvements in classification accuracy and computational efficiency compared to traditional approaches.
arXiv Detail & Related papers (2024-09-12T06:56:52Z) - Multimodal Foundation Models for Zero-shot Animal Species Recognition in
Camera Trap Images [57.96659470133514]
Motion-activated camera traps constitute an efficient tool for tracking and monitoring wildlife populations across the globe.
Supervised learning techniques have been successfully deployed to analyze such imagery, however training such techniques requires annotations from experts.
Reducing the reliance on costly labelled data has immense potential in developing large-scale wildlife tracking solutions with markedly less human labor.
arXiv Detail & Related papers (2023-11-02T08:32:00Z) - XVO: Generalized Visual Odometry via Cross-Modal Self-Training [11.70220331540621]
XVO is a semi-supervised learning method for training generalized monocular Visual Odometry (VO) models.
In contrast to standard monocular VO approaches which often study a known calibration within a single dataset, XVO efficiently learns to recover relative pose with real-world scale.
We optimize the motion estimation model via self-training from large amounts of unconstrained and heterogeneous dash camera videos available on YouTube.
arXiv Detail & Related papers (2023-09-28T18:09:40Z) - Improving Buoy Detection with Deep Transfer Learning for Mussel Farm
Automation [7.906113472259946]
The aquaculture sector in New Zealand is experiencing rapid expansion, with a particular emphasis on mussel exports.
As the demands of mussel farming operations continue to evolve, the integration of artificial intelligence and computer vision techniques is emerging as an effective approach to enhance operational efficiency.
This study delves into advancing buoy detection by leveraging deep learning methodologies for intelligent mussel farm monitoring and management.
arXiv Detail & Related papers (2023-08-18T01:53:47Z) - Bilevel Fast Scene Adaptation for Low-Light Image Enhancement [50.639332885989255]
Enhancing images in low-light scenes is a challenging but widely concerned task in the computer vision.
Main obstacle lies in the modeling conundrum from distribution discrepancy across different scenes.
We introduce the bilevel paradigm to model the above latent correspondence.
A bilevel learning framework is constructed to endow the scene-irrelevant generality of the encoder towards diverse scenes.
arXiv Detail & Related papers (2023-06-02T08:16:21Z) - Augment and Criticize: Exploring Informative Samples for Semi-Supervised
Monocular 3D Object Detection [64.65563422852568]
We improve the challenging monocular 3D object detection problem with a general semi-supervised framework.
We introduce a novel, simple, yet effective Augment and Criticize' framework that explores abundant informative samples from unlabeled data.
The two new detectors, dubbed 3DSeMo_DLE and 3DSeMo_FLEX, achieve state-of-the-art results with remarkable improvements for over 3.5% AP_3D/BEV (Easy) on KITTI.
arXiv Detail & Related papers (2023-03-20T16:28:15Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
We present a new continual learning approach for visual dynamics modeling and explore its efficacy in visual control and forecasting.
We first propose the mixture world model that learns task-specific dynamics priors with a mixture of Gaussians, and then introduce a new training strategy to overcome catastrophic forgetting.
Our model remarkably outperforms the naive combinations of existing continual learning and visual RL algorithms on DeepMind Control and Meta-World benchmarks with continual visual control tasks.
arXiv Detail & Related papers (2023-03-12T05:08:03Z) - Weakly Supervised Two-Stage Training Scheme for Deep Video Fight
Detection Model [0.0]
Fight detection in videos is an emerging deep learning application with today's prevalence of surveillance systems and streaming media.
Previous work has largely relied on action recognition techniques to tackle this problem.
We design the fight detection model as a composition of an action-aware feature extractor and an anomaly score generator.
arXiv Detail & Related papers (2022-09-23T08:29:16Z) - Neurosymbolic hybrid approach to driver collision warning [64.02492460600905]
There are two main algorithmic approaches to autonomous driving systems.
Deep learning alone has achieved state-of-the-art results in many areas.
But sometimes it can be very difficult to debug if the deep learning model doesn't work.
arXiv Detail & Related papers (2022-03-28T20:29:50Z) - Unsupervised Scale-consistent Depth Learning from Video [131.3074342883371]
We propose a monocular depth estimator SC-Depth, which requires only unlabelled videos for training.
Thanks to the capability of scale-consistent prediction, we show that our monocular-trained deep networks are readily integrated into the ORB-SLAM2 system.
The proposed hybrid Pseudo-RGBD SLAM shows compelling results in KITTI, and it generalizes well to the KAIST dataset without additional training.
arXiv Detail & Related papers (2021-05-25T02:17:56Z) - Incremental Learning from Low-labelled Stream Data in Open-Set Video
Face Recognition [0.0]
We propose a novel incremental learning approach which combines a deep features encoder with an Open-Set Dynamic Ensembles of SVM.
Our method can use unsupervised operational data to enhance recognition.
Results show a benefit of up to 15% F1-score increase respect to non-adaptive state-of-the-art methods.
arXiv Detail & Related papers (2020-12-17T13:28:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.