A Simple Approach to Improve Single-Model Deep Uncertainty via
Distance-Awareness
- URL: http://arxiv.org/abs/2205.00403v1
- Date: Sun, 1 May 2022 05:46:13 GMT
- Title: A Simple Approach to Improve Single-Model Deep Uncertainty via
Distance-Awareness
- Authors: Jeremiah Zhe Liu, Shreyas Padhy, Jie Ren, Zi Lin, Yeming Wen, Ghassen
Jerfel, Zack Nado, Jasper Snoek, Dustin Tran, Balaji Lakshminarayanan
- Abstract summary: We study approaches to improve uncertainty property of a single network, based on a single, deterministic representation.
We propose Spectral-normalized Neural Gaussian Process (SNGP), a simple method that improves the distance-awareness ability of modern DNNs.
On a suite of vision and language understanding benchmarks, SNGP outperforms other single-model approaches in prediction, calibration and out-of-domain detection.
- Score: 33.09831377640498
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate uncertainty quantification is a major challenge in deep learning, as
neural networks can make overconfident errors and assign high confidence
predictions to out-of-distribution (OOD) inputs. The most popular approaches to
estimate predictive uncertainty in deep learning are methods that combine
predictions from multiple neural networks, such as Bayesian neural networks
(BNNs) and deep ensembles. However their practicality in real-time,
industrial-scale applications are limited due to the high memory and
computational cost. Furthermore, ensembles and BNNs do not necessarily fix all
the issues with the underlying member networks. In this work, we study
principled approaches to improve uncertainty property of a single network,
based on a single, deterministic representation. By formalizing the uncertainty
quantification as a minimax learning problem, we first identify distance
awareness, i.e., the model's ability to quantify the distance of a testing
example from the training data, as a necessary condition for a DNN to achieve
high-quality (i.e., minimax optimal) uncertainty estimation. We then propose
Spectral-normalized Neural Gaussian Process (SNGP), a simple method that
improves the distance-awareness ability of modern DNNs with two simple changes:
(1) applying spectral normalization to hidden weights to enforce bi-Lipschitz
smoothness in representations and (2) replacing the last output layer with a
Gaussian process layer. On a suite of vision and language understanding
benchmarks, SNGP outperforms other single-model approaches in prediction,
calibration and out-of-domain detection. Furthermore, SNGP provides
complementary benefits to popular techniques such as deep ensembles and data
augmentation, making it a simple and scalable building block for probabilistic
deep learning. Code is open-sourced at
https://github.com/google/uncertainty-baselines
Related papers
- Sparsifying Bayesian neural networks with latent binary variables and
normalizing flows [10.865434331546126]
We will consider two extensions to the latent binary Bayesian neural networks (LBBNN) method.
Firstly, by using the local reparametrization trick (LRT) to sample the hidden units directly, we get a more computationally efficient algorithm.
More importantly, by using normalizing flows on the variational posterior distribution of the LBBNN parameters, the network learns a more flexible variational posterior distribution than the mean field Gaussian.
arXiv Detail & Related papers (2023-05-05T09:40:28Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
Neuro-symbolic approaches typically resort to fuzzy approximations of a probabilistic objective.
We show how to compute this efficiently for tractable circuits.
We test our approach on three tasks: predicting a minimum-cost path in Warcraft, predicting a minimum-cost perfect matching, and solving Sudoku puzzles.
arXiv Detail & Related papers (2023-02-28T00:04:22Z) - Improved uncertainty quantification for neural networks with Bayesian
last layer [0.0]
Uncertainty quantification is an important task in machine learning.
We present a reformulation of the log-marginal likelihood of a NN with BLL which allows for efficient training using backpropagation.
arXiv Detail & Related papers (2023-02-21T20:23:56Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - A Kernel-Expanded Stochastic Neural Network [10.837308632004644]
Deep neural network often gets trapped into a local minimum in training.
New kernel-expanded neural network (K-StoNet) model reformulates the network as a latent variable model.
Model can be easily trained using the imputationregularized optimization (IRO) algorithm.
arXiv Detail & Related papers (2022-01-14T06:42:42Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
We present a novel guided learning paradigm from real-valued to distill binary networks on the final prediction distribution.
Our proposed method can boost the simple contrastive learning baseline by an absolute gain of 5.515% on BNNs.
Our method achieves substantial improvement over the simple contrastive learning baseline, and is even comparable to many mainstream supervised BNN methods.
arXiv Detail & Related papers (2021-02-17T18:59:28Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
Existing deep neural network based salient object detection (SOD) methods mainly focus on pursuing high network accuracy.
These methods overlook the gap between network accuracy and prediction confidence, known as the confidence uncalibration problem.
We introduce an uncertaintyaware deep SOD network, and propose two strategies to prevent deep SOD networks from being overconfident.
arXiv Detail & Related papers (2020-12-10T23:28:36Z) - Encoding the latent posterior of Bayesian Neural Networks for
uncertainty quantification [10.727102755903616]
We aim for efficient deep BNNs amenable to complex computer vision architectures.
We achieve this by leveraging variational autoencoders (VAEs) to learn the interaction and the latent distribution of the parameters at each network layer.
Our approach, Latent-Posterior BNN (LP-BNN), is compatible with the recent BatchEnsemble method, leading to highly efficient (in terms of computation and memory during both training and testing) ensembles.
arXiv Detail & Related papers (2020-12-04T19:50:09Z) - Simple and Principled Uncertainty Estimation with Deterministic Deep
Learning via Distance Awareness [24.473250414880454]
We study principled approaches to high-quality uncertainty estimation that require only a single deep neural network (DNN)
By formalizing the uncertainty quantification as a minimax learning problem, we first identify input distance awareness, i.e., the model's ability to quantify the distance of a testing example from the training data in the input space.
We then propose Spectral-normalized Neural Gaussian Process (SNGP), a simple method that improves the distance-awareness ability of modern DNNs.
arXiv Detail & Related papers (2020-06-17T19:18:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.