Encoding the latent posterior of Bayesian Neural Networks for
uncertainty quantification
- URL: http://arxiv.org/abs/2012.02818v2
- Date: Thu, 25 Mar 2021 12:12:19 GMT
- Title: Encoding the latent posterior of Bayesian Neural Networks for
uncertainty quantification
- Authors: Gianni Franchi, Andrei Bursuc, Emanuel Aldea, Severine Dubuisson,
Isabelle Bloch
- Abstract summary: We aim for efficient deep BNNs amenable to complex computer vision architectures.
We achieve this by leveraging variational autoencoders (VAEs) to learn the interaction and the latent distribution of the parameters at each network layer.
Our approach, Latent-Posterior BNN (LP-BNN), is compatible with the recent BatchEnsemble method, leading to highly efficient (in terms of computation and memory during both training and testing) ensembles.
- Score: 10.727102755903616
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian neural networks (BNNs) have been long considered an ideal, yet
unscalable solution for improving the robustness and the predictive uncertainty
of deep neural networks. While they could capture more accurately the posterior
distribution of the network parameters, most BNN approaches are either limited
to small networks or rely on constraining assumptions such as parameter
independence. These drawbacks have enabled prominence of simple, but
computationally heavy approaches such as Deep Ensembles, whose training and
testing costs increase linearly with the number of networks. In this work we
aim for efficient deep BNNs amenable to complex computer vision architectures,
e.g. ResNet50 DeepLabV3+, and tasks, e.g. semantic segmentation, with fewer
assumptions on the parameters. We achieve this by leveraging variational
autoencoders (VAEs) to learn the interaction and the latent distribution of the
parameters at each network layer. Our approach, Latent-Posterior BNN (LP-BNN),
is compatible with the recent BatchEnsemble method, leading to highly efficient
({in terms of computation and} memory during both training and testing)
ensembles. LP-BNN s attain competitive results across multiple metrics in
several challenging benchmarks for image classification, semantic segmentation
and out-of-distribution detection.
Related papers
- Unveiling the Power of Sparse Neural Networks for Feature Selection [60.50319755984697]
Sparse Neural Networks (SNNs) have emerged as powerful tools for efficient feature selection.
We show that SNNs trained with dynamic sparse training (DST) algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
Our findings show that feature selection with SNNs trained with DST algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
arXiv Detail & Related papers (2024-08-08T16:48:33Z) - Bayesian Inference Accelerator for Spiking Neural Networks [3.145754107337963]
spiking neural networks (SNNs) have the potential to reduce computational area and power.
In this work, we demonstrate an optimization framework for developing and implementing efficient Bayesian SNNs in hardware.
We demonstrate accuracies comparable to Bayesian binary networks with full-precision Bernoulli parameters, while requiring up to $25times$ less spikes.
arXiv Detail & Related papers (2024-01-27T16:27:19Z) - An Automata-Theoretic Approach to Synthesizing Binarized Neural Networks [13.271286153792058]
Quantized neural networks (QNNs) have been developed, with binarized neural networks (BNNs) restricted to binary values as a special case.
This paper presents an automata-theoretic approach to synthesizing BNNs that meet designated properties.
arXiv Detail & Related papers (2023-07-29T06:27:28Z) - Multi-Objective Linear Ensembles for Robust and Sparse Training of Few-Bit Neural Networks [5.246498560938275]
We study the case of few-bit discrete-valued neural networks, both Binarized Neural Networks (BNNs) and Neural Networks (INNs)
Our contribution is a multi-objective ensemble approach based on training a single NN for each possible pair of classes and applying a majority voting scheme to predict the final output.
We compare this BeMi approach to the current state-of-the-art in solver-based NN training and gradient-based training, focusing on BNN learning in few-shot contexts.
arXiv Detail & Related papers (2022-12-07T14:23:43Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - A Mixed Integer Programming Approach for Verifying Properties of
Binarized Neural Networks [44.44006029119672]
We propose a mixed integer programming formulation for BNN verification.
We demonstrate our approach by verifying properties of BNNs trained on the MNIST dataset and an aircraft collision avoidance controller.
arXiv Detail & Related papers (2022-03-11T01:11:29Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
We present a novel guided learning paradigm from real-valued to distill binary networks on the final prediction distribution.
Our proposed method can boost the simple contrastive learning baseline by an absolute gain of 5.515% on BNNs.
Our method achieves substantial improvement over the simple contrastive learning baseline, and is even comparable to many mainstream supervised BNN methods.
arXiv Detail & Related papers (2021-02-17T18:59:28Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.