Stability and convergence of dynamical decoupling with finite amplitude
control
- URL: http://arxiv.org/abs/2205.00988v2
- Date: Sat, 5 Nov 2022 10:25:01 GMT
- Title: Stability and convergence of dynamical decoupling with finite amplitude
control
- Authors: Daniel Burgarth, Paolo Facchi, Robin Hillier
- Abstract summary: We look at decoupling operations of finite amplitude.
We show how the bangbang description arises as a limit, hence justifying it as a reasonable approximation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dynamical decoupling is a key method to mitigate errors in a quantum
mechanical system, and we studied it in a series of papers dealing in
particular with the problems arising from unbounded Hamiltonians. The standard
bangbang model of dynamical decoupling, which we also used in those papers,
requires decoupling operations with infinite amplitude, which is strictly
speaking unrealistic from a physical point of view. In this paper we look at
decoupling operations of finite amplitude, discuss under what assumptions
dynamical decoupling works with such finite amplitude operations, and show how
the bangbang description arises as a limit, hence justifying it as a reasonable
approximation.
Related papers
- Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Learning S-Matrix Phases with Neural Operators [0.0]
We study the relation between the modulus and phase of amplitudes in $2to 2$ elastic scattering at fixed energies.
We do not employ the integral relation imposed by unitarity, but instead train FNOs to discover it from many samples of amplitudes with finite partial wave expansions.
arXiv Detail & Related papers (2024-04-22T19:46:07Z) - Dynamics of inhomogeneous spin ensembles with all-to-all interactions:
breaking permutational invariance [49.1574468325115]
We investigate the consequences of introducing non-uniform initial conditions in the dynamics of spin ensembles characterized by all-to-all interactions.
We find that the dynamics of the spin ensemble now spans a more expansive effective Hilbert space.
arXiv Detail & Related papers (2023-09-19T16:44:14Z) - Interface dynamics in the two-dimensional quantum Ising model [0.0]
We show that the dynamics of interfaces, in the symmetry-broken phase of the two-dimensional ferromagnetic quantum Ising model, displays a robust form of ergodicity breaking.
We present a detailed analysis of the evolution of these interfaces both on the lattice and in a suitable continuum limit.
The implications of our work for the classic problem of the decay of a false vacuum are also discussed.
arXiv Detail & Related papers (2022-09-19T13:08:58Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Unification of Random Dynamical Decoupling and the Quantum Zeno Effect [68.8204255655161]
We show that the system dynamics under random dynamical decoupling converges to a unitary with a decoupling error that characteristically depends on the convergence speed of the Zeno limit.
This reveals a unification of the random dynamical decoupling and the quantum Zeno effect.
arXiv Detail & Related papers (2021-12-08T11:41:38Z) - Process tomography of Robust Dynamical Decoupling in Superconducting
Qubits [91.3755431537592]
The Rigetti quantum computing platform was used to test different dynamical decoupling sequences.
The performance of the sequences was characterized by Quantum Process Tomography and analyzed using the quantum channels formalism.
arXiv Detail & Related papers (2020-06-18T14:48:18Z) - Environmentally Induced Entanglement -- Anomalous Behavior in the
Adiabatic Regime [0.0]
In a perturbative regime the influence of the environment on the system dynamics can effectively be described by a unitary contribution.
For resonant qubits, even in the adiabatic regime, the entanglement dynamics is still influenced by an environmentally induced Hamiltonian interaction.
arXiv Detail & Related papers (2020-06-08T08:39:03Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.