Neurocompositional computing: From the Central Paradox of Cognition to a
new generation of AI systems
- URL: http://arxiv.org/abs/2205.01128v1
- Date: Mon, 2 May 2022 18:00:10 GMT
- Title: Neurocompositional computing: From the Central Paradox of Cognition to a
new generation of AI systems
- Authors: Paul Smolensky, R. Thomas McCoy, Roland Fernandez, Matthew Goldrick,
Jianfeng Gao
- Abstract summary: Recent progress in AI has resulted from the use of limited forms of neurocompositional computing.
New, deeper forms of neurocompositional computing create AI systems that are more robust, accurate, and comprehensible.
- Score: 120.297940190903
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: What explains the dramatic progress from 20th-century to 21st-century AI, and
how can the remaining limitations of current AI be overcome? The widely
accepted narrative attributes this progress to massive increases in the
quantity of computational and data resources available to support statistical
learning in deep artificial neural networks. We show that an additional crucial
factor is the development of a new type of computation. Neurocompositional
computing adopts two principles that must be simultaneously respected to enable
human-level cognition: the principles of Compositionality and Continuity. These
have seemed irreconcilable until the recent mathematical discovery that
compositionality can be realized not only through discrete methods of symbolic
computing, but also through novel forms of continuous neural computing. The
revolutionary recent progress in AI has resulted from the use of limited forms
of neurocompositional computing. New, deeper forms of neurocompositional
computing create AI systems that are more robust, accurate, and comprehensible.
Related papers
- Towards Efficient Neuro-Symbolic AI: From Workload Characterization to Hardware Architecture [22.274696991107206]
Neuro-symbolic AI emerges as a promising paradigm, fusing neural and symbolic approaches to enhance interpretability, robustness, and trustworthiness.
Recent neuro-symbolic systems have demonstrated great potential in collaborative human-AI scenarios with reasoning and cognitive capabilities.
We first systematically categorize neuro-symbolic AI algorithms, and then experimentally evaluate and analyze them in terms of runtime, memory, computational operators, sparsity, and system characteristics.
arXiv Detail & Related papers (2024-09-20T01:32:14Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Neuronal Auditory Machine Intelligence (NEURO-AMI) In Perspective [0.0]
We present an overview of a new competing bio-inspired continual learning neural tool Neuronal Auditory Machine Intelligence (Neuro-AMI)
In this report, we present an overview of a new competing bio-inspired continual learning neural tool Neuronal Auditory Machine Intelligence (Neuro-AMI)
arXiv Detail & Related papers (2023-10-14T13:17:58Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Neuromorphic Artificial Intelligence Systems [58.1806704582023]
Modern AI systems, based on von Neumann architecture and classical neural networks, have a number of fundamental limitations in comparison with the brain.
This article discusses such limitations and the ways they can be mitigated.
It presents an overview of currently available neuromorphic AI projects in which these limitations are overcome.
arXiv Detail & Related papers (2022-05-25T20:16:05Z) - Neuro-Symbolic Learning of Answer Set Programs from Raw Data [54.56905063752427]
Neuro-Symbolic AI aims to combine interpretability of symbolic techniques with the ability of deep learning to learn from raw data.
We introduce Neuro-Symbolic Inductive Learner (NSIL), an approach that trains a general neural network to extract latent concepts from raw data.
NSIL learns expressive knowledge, solves computationally complex problems, and achieves state-of-the-art performance in terms of accuracy and data efficiency.
arXiv Detail & Related papers (2022-05-25T12:41:59Z) - Neurosymbolic AI: The 3rd Wave [1.14219428942199]
Concerns about trust, safety, interpretability and accountability of AI were raised by influential thinkers.
Many have identified the need for well-founded knowledge representation and reasoning to be integrated with deep learning.
Neural-symbolic computing has been an active area of research seeking to bring together robust learning in neural networks with reasoning and explainability.
arXiv Detail & Related papers (2020-12-10T18:31:38Z) - Memristors -- from In-memory computing, Deep Learning Acceleration,
Spiking Neural Networks, to the Future of Neuromorphic and Bio-inspired
Computing [25.16076541420544]
Machine learning, particularly in the form of deep learning, has driven most of the recent fundamental developments in artificial intelligence.
Deep learning has been successfully applied in areas such as object/pattern recognition, speech and natural language processing, self-driving vehicles, intelligent self-diagnostics tools, autonomous robots, knowledgeable personal assistants, and monitoring.
This paper reviews the case for a novel beyond CMOS hardware technology, memristors, as a potential solution for the implementation of power-efficient in-memory computing, deep learning accelerators, and spiking neural networks.
arXiv Detail & Related papers (2020-04-30T16:49:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.