Neurosymbolic AI: The 3rd Wave
- URL: http://arxiv.org/abs/2012.05876v2
- Date: Wed, 16 Dec 2020 23:21:05 GMT
- Title: Neurosymbolic AI: The 3rd Wave
- Authors: Artur d'Avila Garcez and Luis C. Lamb
- Abstract summary: Concerns about trust, safety, interpretability and accountability of AI were raised by influential thinkers.
Many have identified the need for well-founded knowledge representation and reasoning to be integrated with deep learning.
Neural-symbolic computing has been an active area of research seeking to bring together robust learning in neural networks with reasoning and explainability.
- Score: 1.14219428942199
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current advances in Artificial Intelligence (AI) and Machine Learning (ML)
have achieved unprecedented impact across research communities and industry.
Nevertheless, concerns about trust, safety, interpretability and accountability
of AI were raised by influential thinkers. Many have identified the need for
well-founded knowledge representation and reasoning to be integrated with deep
learning and for sound explainability. Neural-symbolic computing has been an
active area of research for many years seeking to bring together robust
learning in neural networks with reasoning and explainability via symbolic
representations for network models. In this paper, we relate recent and early
research results in neurosymbolic AI with the objective of identifying the key
ingredients of the next wave of AI systems. We focus on research that
integrates in a principled way neural network-based learning with symbolic
knowledge representation and logical reasoning. The insights provided by 20
years of neural-symbolic computing are shown to shed new light onto the
increasingly prominent role of trust, safety, interpretability and
accountability of AI. We also identify promising directions and challenges for
the next decade of AI research from the perspective of neural-symbolic systems.
Related papers
- Towards Efficient Neuro-Symbolic AI: From Workload Characterization to Hardware Architecture [22.274696991107206]
Neuro-symbolic AI emerges as a promising paradigm, fusing neural and symbolic approaches to enhance interpretability, robustness, and trustworthiness.
Recent neuro-symbolic systems have demonstrated great potential in collaborative human-AI scenarios with reasoning and cognitive capabilities.
We first systematically categorize neuro-symbolic AI algorithms, and then experimentally evaluate and analyze them in terms of runtime, memory, computational operators, sparsity, and system characteristics.
arXiv Detail & Related papers (2024-09-20T01:32:14Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - Exploring knowledge graph-based neural-symbolic system from application perspective [0.0]
achieving human-like reasoning and interpretability in AI systems remains a substantial challenge.
The Neural-Symbolic paradigm, which integrates neural networks with symbolic systems, presents a promising pathway toward more interpretable AI.
This paper explores recent advancements in neural-symbolic integration based on Knowledge Graphs.
arXiv Detail & Related papers (2024-05-06T14:40:50Z) - Towards Cognitive AI Systems: a Survey and Prospective on Neuro-Symbolic
AI [33.0761784111292]
Neuro-symbolic AI emerges as a promising paradigm to enhance interpretability, robustness, and trustworthiness.
Recent NSAI systems have demonstrated great potential in collaborative human-AI scenarios with reasoning and cognitive capabilities.
arXiv Detail & Related papers (2024-01-02T05:00:54Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Neurosymbolic AI - Why, What, and How [9.551858963199987]
Humans interact with the environment using a combination of perception and cognition.
On the other hand, machine cognition encompasses more complex computations.
This article introduces the rapidly emerging paradigm of Neurosymbolic AI.
arXiv Detail & Related papers (2023-05-01T13:27:22Z) - Towards Data-and Knowledge-Driven Artificial Intelligence: A Survey on Neuro-Symbolic Computing [73.0977635031713]
Neural-symbolic computing (NeSy) has been an active research area of Artificial Intelligence (AI) for many years.
NeSy shows promise of reconciling the advantages of reasoning and interpretability of symbolic representation and robust learning in neural networks.
arXiv Detail & Related papers (2022-10-28T04:38:10Z) - Neuro-Symbolic Learning of Answer Set Programs from Raw Data [54.56905063752427]
Neuro-Symbolic AI aims to combine interpretability of symbolic techniques with the ability of deep learning to learn from raw data.
We introduce Neuro-Symbolic Inductive Learner (NSIL), an approach that trains a general neural network to extract latent concepts from raw data.
NSIL learns expressive knowledge, solves computationally complex problems, and achieves state-of-the-art performance in terms of accuracy and data efficiency.
arXiv Detail & Related papers (2022-05-25T12:41:59Z) - Neurocompositional computing: From the Central Paradox of Cognition to a
new generation of AI systems [120.297940190903]
Recent progress in AI has resulted from the use of limited forms of neurocompositional computing.
New, deeper forms of neurocompositional computing create AI systems that are more robust, accurate, and comprehensible.
arXiv Detail & Related papers (2022-05-02T18:00:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.