論文の概要: Classical and Quantum Solvers for Joint Network/Servers Power
Optimization
- arxiv url: http://arxiv.org/abs/2205.01165v1
- Date: Mon, 2 May 2022 19:17:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-14 20:22:29.104516
- Title: Classical and Quantum Solvers for Joint Network/Servers Power
Optimization
- Title(参考訳): ネットワーク/サーバの電力最適化のための古典解と量子解法
- Authors: Michele Amoretti, Davide Ferrari, Antonio Manzalini
- Abstract要約: 通信とICTドメインのデジタルトランスフォーメーションは、通信事業者にいくつかの新しい課題を提起している。
これらの課題は、データセンターにおける仮想リソースの次元化とスケジューリングのような複雑な問題を解決する必要がある。
仮想データセンターでは,ネットワーク/サーバの電力消費を最小化して仮想マシンの統合を行なわなければならない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The digital transformation that Telecommunications and ICT domains are
crossing today, is posing several new challenges to Telecom Operators. These
challenges require solving complex problems such as: dimensioning and
scheduling of virtual/real resources in data centers; automating real-time
management/control and orchestration of networks processes; optimizing energy
consumption; and overall, ensuring networks and services stability. These
problems are usually tackled with methods and algorithms that find suboptimal
solutions, for computational efficiency reasons. In this work, we consider a
Virtual Data Center scenario where virtual machine consolidation must be
performed with joint minimization of network/servers power consumption. For
this scenario, we provide an ILP model, the equivalent binary model and the
steps towards the equivalent Quadratic Unconstrained Binary Optimization (QUBO)
model that is suitable for being solved by means of quantum optimization
algorithms. Finally, we compare the computational complexity of classical and
quantum solvers from a theoretical perspective.
- Abstract(参考訳): 今日、電気通信とictドメインが交差するデジタルトランスフォーメーションは、通信事業者にいくつかの新たな課題をもたらしている。
これらの課題には、データセンターにおける仮想リソースの次元化とスケジューリング、ネットワークプロセスのリアルタイム管理/制御とオーケストレーションの自動化、エネルギー消費の最適化、ネットワークとサービスの安定性の確保など、複雑な問題を解決する必要がある。
これらの問題は通常、計算効率の理由から最適化された解を見つける方法やアルゴリズムに対処される。
本研究では,ネットワーク/サーバの電力消費を最小化して仮想マシンの統合を行う仮想データセンターのシナリオを検討する。
このシナリオでは、量子最適化アルゴリズムを用いて解くのに適した、ILPモデル、等価バイナリモデルおよび等価な準非制約バイナリ最適化(QUBO)モデルへのステップを提供する。
最後に,古典解と量子解の計算複雑性を理論的観点から比較する。
関連論文リスト
- A hybrid Quantum-Classical Algorithm for Mixed-Integer Optimization in Power Systems [0.0]
量子コンピュータ(QC)を用いた電力系統最適化問題の解法フレームワークを提案する。
我々の指導的応用は、DC Optimal Power Flowを解くために訓練されたニューラルネットワークの最適送信切替と検証である。
論文 参考訳(メタデータ) (2024-04-16T16:11:56Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Multi-Objective Optimization and Network Routing with Near-Term Quantum
Computers [0.2150989251218736]
我々は,多目的最適化問題を解くために,近距離量子コンピュータを応用できる手法を開発した。
量子近似最適化アルゴリズム(QAOA)に基づく実装に焦点を当てる。
論文 参考訳(メタデータ) (2023-08-16T09:22:01Z) - Elastic Entangled Pair and Qubit Resource Management in Quantum Cloud
Computing [73.7522199491117]
量子クラウドコンピューティング(QCC)は、量子コンピューティングリソースを効率的に提供するための有望なアプローチを提供する。
ユーザ需要の変動と量子回路の要求は、効率的なリソース供給のために困難である。
本稿では、量子コンピューティングとネットワークリソースのプロビジョニングのためのリソース割り当てモデルを提案する。
論文 参考訳(メタデータ) (2023-07-25T00:38:46Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
独立サブネットワークトレーニング(IST)の理論的考察
ISTは、上記の問題を解決するための、最近提案され、非常に効果的である。
圧縮通信を用いた分散手法など,ISTと代替手法の基本的な違いを同定する。
論文 参考訳(メタデータ) (2023-06-28T18:14:22Z) - Slimmable Encoders for Flexible Split DNNs in Bandwidth and Resource
Constrained IoT Systems [12.427821850039448]
本稿では,スリム化可能なアンサンブルエンコーダに基づく分割計算手法を提案する。
私たちの設計の主な利点は、計算負荷と送信データサイズを最小限のオーバーヘッドと時間でリアルタイムで適応できることです。
本モデルでは,圧縮効率や実行時間,特にモバイルデバイスの弱い状況において,既存のソリューションよりも優れています。
論文 参考訳(メタデータ) (2023-06-22T06:33:12Z) - Joint Optimization of Energy Consumption and Completion Time in
Federated Learning [16.127019859725785]
フェデレートラーニング(FL)は、プライバシ保護の特性から興味深い分散機械学習アプローチである。
エネルギーと実行遅延の間のトレードオフをバランスさせるアルゴリズムを定式化し、異なる要求とアプリケーションシナリオに対応する。
論文 参考訳(メタデータ) (2022-09-29T16:05:28Z) - Entanglement Rate Optimization in Heterogeneous Quantum Communication
Networks [79.8886946157912]
量子通信ネットワークは、将来6G以降の通信ネットワークにおいて重要な構成要素となる可能性のある、有望な技術として登場しつつある。
近年の進歩は、実際の量子ハードウェアによる小規模および大規模量子通信ネットワークの展開に繋がった。
量子ネットワークにおいて、絡み合いは異なるノード間でのデータ転送を可能にする鍵となるリソースである。
論文 参考訳(メタデータ) (2021-05-30T11:34:23Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
渋滞制御アルゴリズムの成功は、レイテンシとネットワーク全体のスループットを劇的に改善する。
今日まで、このような学習ベースのアルゴリズムはこの領域で実用的な可能性を示さなかった。
実世界のデータセンターネットワークの様々な構成に一般化することを目的としたRLに基づくアルゴリズムを考案する。
本稿では,この手法が他のRL手法よりも優れており,トレーニング中に見られなかったシナリオに一般化可能であることを示す。
論文 参考訳(メタデータ) (2021-02-18T13:49:28Z) - Deep Reinforcement Learning for Stochastic Computation Offloading in
Digital Twin Networks [1.0509026467663467]
Digital Twinは、産業用モノのインターネット(IIoT)のデジタルトランスフォーメーションを強化するための有望な技術である
我々はまず,ネットワークトポロジとタスク到着モデルを構築するための新しいパラダイムであるDigital Twin Networks (DTN)を提案する。
次に, 長期エネルギー効率を最小化するために, 計算オフロード問題と資源配分問題を定式化する。
論文 参考訳(メタデータ) (2020-11-17T05:40:16Z) - A Machine Learning Approach for Task and Resource Allocation in Mobile
Edge Computing Based Networks [108.57859531628264]
無線ネットワークにおいて,共同作業,スペクトル,送信電力配分問題について検討する。
提案アルゴリズムは、標準Q-ラーニングアルゴリズムと比較して、収束に必要なイテレーション数と全ユーザの最大遅延を最大18%、11.1%削減することができる。
論文 参考訳(メタデータ) (2020-07-20T13:46:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。