論文の概要: A Process To Support Cloud Release Preparation
- arxiv url: http://arxiv.org/abs/2205.01372v2
- Date: Mon, 12 Aug 2024 10:08:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 01:37:20.446451
- Title: A Process To Support Cloud Release Preparation
- Title(参考訳): クラウドリリース準備をサポートするプロセス
- Authors: James J. Cusick,
- Abstract要約: 本稿では,ソフトウェアとシステムリリースの本番環境への準備を支援する概念と方法を提案する。
キーワード:Operational Readiness Review, ORR, IT Services, IT Operations, Process Engineering, Reliability, Availability, Software Architecture, Cloud Computing, Networking, Site Reliability Engineering, Agile Methods, Quality, Defect Prevention, Release Management, Risk Management, Data Visualization, Organizational Change Management。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper presents concepts and methods to support preparing software and system releases to production. Keywords: Operational Readiness Review, ORR, IT Services, IT Operations, ITIL, Process Engineering, Reliability, Availability, Software Architecture, Cloud Computing, Networking, Site Reliability Engineering, DevOps, Agile Methods, Quality, Defect Prevention, Release Management, Risk Management, Data Visualization, Organizational Change Management.
- Abstract(参考訳): 本稿では,ソフトウェアとシステムリリースの本番環境への準備を支援する概念と方法を提案する。
キーワード:Operational Readiness Review, ORR, IT Services, IT Operations, ITIL, Process Engineering, Reliability, Availability, Software Architecture, Cloud Computing, Networking, Site Reliability Engineering, DevOps, Agile Methods, Quality, Defect Prevention, Release Management, Risk Management, Data Visualization, Organizational Change Management。
関連論文リスト
- The Responsible Foundation Model Development Cheatsheet: A Review of Tools & Resources [100.23208165760114]
ファンデーションモデル開発は、急速に成長するコントリビュータ、科学者、アプリケーションを引き付けている。
責任ある開発プラクティスを形成するために、我々はFoundation Model Development Cheatsheetを紹介します。
論文 参考訳(メタデータ) (2024-06-24T15:55:49Z) - Charting a Path to Efficient Onboarding: The Role of Software
Visualization [49.1574468325115]
本研究は,ソフトウェアビジュアライゼーションツールを用いたマネージャ,リーダ,開発者の親しみやすさを探求することを目的としている。
本手法は, 質問紙調査と半構造化面接を用いて, 実践者から収集したデータの量的, 質的分析を取り入れた。
論文 参考訳(メタデータ) (2024-01-17T21:30:45Z) - Devops And Agile Methods Integrated Software Configuration Management
Experience [0.0]
本研究の目的は,従来の手法と比較して,革新的な手法がソフトウェア構成管理分野にもたらす違いとメリットを検討することである。
ビルドとデプロイメント時間、自動レポート生成、より正確でフォールトフリーなバージョン管理で改善が見られる。
論文 参考訳(メタデータ) (2023-06-24T13:40:27Z) - Machine Learning Based Approach to Recommend MITRE ATT&CK Framework for
Software Requirements and Design Specifications [0.0]
セキュアなソフトウェアを開発するためには、ソフトウェアリポジトリをマイニングすることで、ソフトウェア開発者は攻撃者のように考える必要がある。
本稿では,機械学習アルゴリズムを用いて要求をMITRE ATT&CKデータベースにマッピングする。
論文 参考訳(メタデータ) (2023-02-10T22:15:45Z) - Towards an Improved Understanding of Software Vulnerability Assessment
Using Data-Driven Approaches [0.0]
この論文は、ソフトウェア脆弱性評価のための知識と自動化のサポートを提供することによって、ソフトウェアセキュリティの分野を前進させる。
主な貢献は、知識の体系化と、新しいデータ駆動技術群である。
論文 参考訳(メタデータ) (2022-07-24T10:22:28Z) - Towards a Reference Software Architecture for Human-AI Teaming in Smart
Manufacturing [0.0]
我々は、知識グラフ、トラッキングとシーン分析、およびリレーショナル機械学習のためのコンポーネントに基づくリファレンスソフトウェアアーキテクチャを開発した。
本ソフトウェアアーキテクチャの実証検証は,自動車,エネルギーシステム,精密加工領域の大規模企業3社と連携して実施する。
論文 参考訳(メタデータ) (2022-01-13T10:43:49Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - A Cognitive Approach based on the Actionable Knowledge Graph for
supporting Maintenance Operations [3.3198770589233284]
本研究では,過去の介入から学び,保守実践を改善するためのコンテキストレコメンデーションを生成する認知システムを提案する。
このシステムは、これらの目的を達成するために、形式的な概念モデル、漸進学習、ランキングアルゴリズムを使用する。
論文 参考訳(メタデータ) (2020-11-18T21:53:00Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
本稿では,ディープラーニング・アズ・ア・サービスのための分散アーキテクチャを提案する。
クラウドベースのマシンとディープラーニングサービスを提供しながら、ユーザの機密データを保存できる。
論文 参考訳(メタデータ) (2020-03-30T15:12:03Z) - Towards CRISP-ML(Q): A Machine Learning Process Model with Quality
Assurance Methodology [53.063411515511056]
本稿では,機械学習アプリケーション開発のためのプロセスモデルを提案する。
第1フェーズでは、データの可用性がプロジェクトの実現可能性に影響を与えることが多いため、ビジネスとデータの理解が結合されます。
第6フェーズでは、機械学習アプリケーションの監視とメンテナンスに関する最先端のアプローチがカバーされている。
論文 参考訳(メタデータ) (2020-03-11T08:25:49Z) - Knowledge Integration of Collaborative Product Design Using Cloud
Computing Infrastructure [65.2157099438235]
本論文の主な焦点は、クラウドコンピューティングインフラを用いた協調製品設計・開発のための知識統合サービスの提供に関する継続的な研究のコンセプトである。
提案された知識統合サービスは,知識リソースへのリアルタイムアクセスを提供することによってユーザを支援する。
論文 参考訳(メタデータ) (2020-01-16T18:44:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。