Scalable Regularised Joint Mixture Models
- URL: http://arxiv.org/abs/2205.01486v1
- Date: Tue, 3 May 2022 13:38:58 GMT
- Title: Scalable Regularised Joint Mixture Models
- Authors: Thomas Lartigue, Sach Mukherjee
- Abstract summary: In many applications, data can be heterogeneous in the sense of spanning latent groups with different underlying distributions.
We propose an approach for heterogeneous data that allows joint learning of (i) explicit multivariate feature distributions, (ii) high-dimensional regression models and (iii) latent group labels.
The approach is demonstrably effective in high dimensions, combining data reduction for computational efficiency with a re-weighting scheme that retains key signals even when the number of features is large.
- Score: 2.0686407686198263
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In many applications, data can be heterogeneous in the sense of spanning
latent groups with different underlying distributions. When predictive models
are applied to such data the heterogeneity can affect both predictive
performance and interpretability. Building on developments at the intersection
of unsupervised learning and regularised regression, we propose an approach for
heterogeneous data that allows joint learning of (i) explicit multivariate
feature distributions, (ii) high-dimensional regression models and (iii) latent
group labels, with both (i) and (ii) specific to latent groups and both
elements informing (iii). The approach is demonstrably effective in high
dimensions, combining data reduction for computational efficiency with a
re-weighting scheme that retains key signals even when the number of features
is large. We discuss in detail these aspects and their impact on modelling and
computation, including EM convergence. The approach is modular and allows
incorporation of data reductions and high-dimensional estimators that are
suitable for specific applications. We show results from extensive simulations
and real data experiments, including highly non-Gaussian data. Our results
allow efficient, effective analysis of high-dimensional data in settings, such
as biomedicine, where both interpretable prediction and explicit feature space
models are needed but hidden heterogeneity may be a concern.
Related papers
- Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
In this work, we propose a geometric diffusion model with learnable divergence fields for the challenging problem with interdependent data.
We derive a new learning objective through causal inference, which can guide the model to learn generalizable patterns of interdependence that are insensitive across domains.
arXiv Detail & Related papers (2024-06-07T14:29:21Z) - Joint Distributional Learning via Cramer-Wold Distance [0.7614628596146602]
We introduce the Cramer-Wold distance regularization, which can be computed in a closed-form, to facilitate joint distributional learning for high-dimensional datasets.
We also introduce a two-step learning method to enable flexible prior modeling and improve the alignment between the aggregated posterior and the prior distribution.
arXiv Detail & Related papers (2023-10-25T05:24:23Z) - Predictive Heterogeneity: Measures and Applications [26.85283526483783]
We propose the emphusable predictive heterogeneity, which takes into account the model capacity and computational constraints.
We show that it can be reliably estimated from finite data with probably approximately correct (PAC) bounds.
Empirically, the explored heterogeneity provides insights for sub-population divisions in income prediction, crop yield prediction and image classification tasks.
arXiv Detail & Related papers (2023-04-01T12:20:06Z) - Data-IQ: Characterizing subgroups with heterogeneous outcomes in tabular
data [81.43750358586072]
We propose Data-IQ, a framework to systematically stratify examples into subgroups with respect to their outcomes.
We experimentally demonstrate the benefits of Data-IQ on four real-world medical datasets.
arXiv Detail & Related papers (2022-10-24T08:57:55Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
In this paper, we show how bringing recent results on equivariant representation learning instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution.
We demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples.
arXiv Detail & Related papers (2022-03-29T04:54:06Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Functional Mixtures-of-Experts [0.24578723416255746]
We consider the statistical analysis of heterogeneous data for prediction in situations where the observations include functions.
We first present a new family of ME models, named functional ME (FME) in which the predictors are potentially noisy observations.
We develop dedicated expectation--maximization algorithms for Lasso-like (EM-Lasso) regularized maximum-likelihood parameter estimation strategies to fit the models.
arXiv Detail & Related papers (2022-02-04T17:32:28Z) - Optimal regularizations for data generation with probabilistic graphical
models [0.0]
Empirically, well-chosen regularization schemes dramatically improve the quality of the inferred models.
We consider the particular case of L 2 and L 1 regularizations in the Maximum A Posteriori (MAP) inference of generative pairwise graphical models.
arXiv Detail & Related papers (2021-12-02T14:45:16Z) - Multimodal Data Fusion in High-Dimensional Heterogeneous Datasets via
Generative Models [16.436293069942312]
We are interested in learning probabilistic generative models from high-dimensional heterogeneous data in an unsupervised fashion.
We propose a general framework that combines disparate data types through the exponential family of distributions.
The proposed algorithm is presented in detail for the commonly encountered heterogeneous datasets with real-valued (Gaussian) and categorical (multinomial) features.
arXiv Detail & Related papers (2021-08-27T18:10:31Z) - Bayesian Sparse Factor Analysis with Kernelized Observations [67.60224656603823]
Multi-view problems can be faced with latent variable models.
High-dimensionality and non-linear issues are traditionally handled by kernel methods.
We propose merging both approaches into single model.
arXiv Detail & Related papers (2020-06-01T14:25:38Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.