Multimodal Data Fusion in High-Dimensional Heterogeneous Datasets via
Generative Models
- URL: http://arxiv.org/abs/2108.12445v1
- Date: Fri, 27 Aug 2021 18:10:31 GMT
- Title: Multimodal Data Fusion in High-Dimensional Heterogeneous Datasets via
Generative Models
- Authors: Yasin Yilmaz, Mehmet Aktukmak, Alfred O. Hero
- Abstract summary: We are interested in learning probabilistic generative models from high-dimensional heterogeneous data in an unsupervised fashion.
We propose a general framework that combines disparate data types through the exponential family of distributions.
The proposed algorithm is presented in detail for the commonly encountered heterogeneous datasets with real-valued (Gaussian) and categorical (multinomial) features.
- Score: 16.436293069942312
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The commonly used latent space embedding techniques, such as Principal
Component Analysis, Factor Analysis, and manifold learning techniques, are
typically used for learning effective representations of homogeneous data.
However, they do not readily extend to heterogeneous data that are a
combination of numerical and categorical variables, e.g., arising from linked
GPS and text data. In this paper, we are interested in learning probabilistic
generative models from high-dimensional heterogeneous data in an unsupervised
fashion. The learned generative model provides latent unified representations
that capture the factors common to the multiple dimensions of the data, and
thus enable fusing multimodal data for various machine learning tasks.
Following a Bayesian approach, we propose a general framework that combines
disparate data types through the natural parameterization of the exponential
family of distributions. To scale the model inference to millions of instances
with thousands of features, we use the Laplace-Bernstein approximation for
posterior computations involving nonlinear link functions. The proposed
algorithm is presented in detail for the commonly encountered heterogeneous
datasets with real-valued (Gaussian) and categorical (multinomial) features.
Experiments on two high-dimensional and heterogeneous datasets (NYC Taxi and
MovieLens-10M) demonstrate the scalability and competitive performance of the
proposed algorithm on different machine learning tasks such as anomaly
detection, data imputation, and recommender systems.
Related papers
- Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
In this work, we propose a geometric diffusion model with learnable divergence fields for the challenging problem with interdependent data.
We derive a new learning objective through causal inference, which can guide the model to learn generalizable patterns of interdependence that are insensitive across domains.
arXiv Detail & Related papers (2024-06-07T14:29:21Z) - Joint Distributional Learning via Cramer-Wold Distance [0.7614628596146602]
We introduce the Cramer-Wold distance regularization, which can be computed in a closed-form, to facilitate joint distributional learning for high-dimensional datasets.
We also introduce a two-step learning method to enable flexible prior modeling and improve the alignment between the aggregated posterior and the prior distribution.
arXiv Detail & Related papers (2023-10-25T05:24:23Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
We derive a likelihood characterisation for the overall data that leads us to extend a previous EM-based algorithm.
The new algorithm learns to approximate the (unidentifiability) region of model parameters from such mixed data sources.
It delivers interval approximations to counterfactual results, which collapse to points in the identifiable case.
arXiv Detail & Related papers (2022-12-06T12:42:11Z) - RandomSCM: interpretable ensembles of sparse classifiers tailored for
omics data [59.4141628321618]
We propose an ensemble learning algorithm based on conjunctions or disjunctions of decision rules.
The interpretability of the models makes them useful for biomarker discovery and patterns discovery in high dimensional data.
arXiv Detail & Related papers (2022-08-11T13:55:04Z) - Scalable Regularised Joint Mixture Models [2.0686407686198263]
In many applications, data can be heterogeneous in the sense of spanning latent groups with different underlying distributions.
We propose an approach for heterogeneous data that allows joint learning of (i) explicit multivariate feature distributions, (ii) high-dimensional regression models and (iii) latent group labels.
The approach is demonstrably effective in high dimensions, combining data reduction for computational efficiency with a re-weighting scheme that retains key signals even when the number of features is large.
arXiv Detail & Related papers (2022-05-03T13:38:58Z) - Scalable Gaussian Processes for Data-Driven Design using Big Data with
Categorical Factors [14.337297795182181]
Gaussian processes (GP) have difficulties in accommodating big datasets, categorical inputs, and multiple responses.
We propose a GP model that utilizes latent variables and functions obtained through variational inference to address the aforementioned challenges simultaneously.
Our approach is demonstrated for machine learning of ternary oxide materials and topology optimization of a multiscale compliant mechanism.
arXiv Detail & Related papers (2021-06-26T02:17:23Z) - Variational Selective Autoencoder: Learning from Partially-Observed
Heterogeneous Data [45.23338389559936]
We propose the variational selective autoencoder (VSAE) to learn representations from partially-observed heterogeneous data.
VSAE learns the latent dependencies in heterogeneous data by modeling the joint distribution of observed data, unobserved data, and the imputation mask.
It results in a unified model for various downstream tasks including data generation and imputation.
arXiv Detail & Related papers (2021-02-25T04:39:13Z) - Generalized Matrix Factorization: efficient algorithms for fitting
generalized linear latent variable models to large data arrays [62.997667081978825]
Generalized Linear Latent Variable models (GLLVMs) generalize such factor models to non-Gaussian responses.
Current algorithms for estimating model parameters in GLLVMs require intensive computation and do not scale to large datasets.
We propose a new approach for fitting GLLVMs to high-dimensional datasets, based on approximating the model using penalized quasi-likelihood.
arXiv Detail & Related papers (2020-10-06T04:28:19Z) - VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data [16.00692074660383]
VAEM is a deep generative model that is trained in a two stage manner.
We show that VAEM broadens the range of real-world applications where deep generative models can be successfully deployed.
arXiv Detail & Related papers (2020-06-21T23:47:32Z) - Bayesian Sparse Factor Analysis with Kernelized Observations [67.60224656603823]
Multi-view problems can be faced with latent variable models.
High-dimensionality and non-linear issues are traditionally handled by kernel methods.
We propose merging both approaches into single model.
arXiv Detail & Related papers (2020-06-01T14:25:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.