Fair Feature Subset Selection using Multiobjective Genetic Algorithm
- URL: http://arxiv.org/abs/2205.01512v1
- Date: Sat, 30 Apr 2022 22:51:19 GMT
- Title: Fair Feature Subset Selection using Multiobjective Genetic Algorithm
- Authors: Ayaz Ur Rehman, Anas Nadeem, Muhammad Zubair Malik
- Abstract summary: We present a feature subset selection approach that improves both fairness and accuracy objectives.
We use statistical disparity as a fairness metric and F1-Score as a metric for model performance.
Our experiments on the most commonly used fairness benchmark datasets show that using the evolutionary algorithm we can effectively explore the trade-off between fairness and accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The feature subset selection problem aims at selecting the relevant subset of
features to improve the performance of a Machine Learning (ML) algorithm on
training data. Some features in data can be inherently noisy, costly to
compute, improperly scaled, or correlated to other features, and they can
adversely affect the accuracy, cost, and complexity of the induced algorithm.
The goal of traditional feature selection approaches has been to remove such
irrelevant features. In recent years ML is making a noticeable impact on the
decision-making processes of our everyday lives. We want to ensure that these
decisions do not reflect biased behavior towards certain groups or individuals
based on protected attributes such as age, sex, or race. In this paper, we
present a feature subset selection approach that improves both fairness and
accuracy objectives and computes Pareto-optimal solutions using the NSGA-II
algorithm. We use statistical disparity as a fairness metric and F1-Score as a
metric for model performance. Our experiments on the most commonly used
fairness benchmark datasets with three different machine learning algorithms
show that using the evolutionary algorithm we can effectively explore the
trade-off between fairness and accuracy.
Related papers
- Switchable Decision: Dynamic Neural Generation Networks [98.61113699324429]
We propose a switchable decision to accelerate inference by dynamically assigning resources for each data instance.
Our method benefits from less cost during inference while keeping the same accuracy.
arXiv Detail & Related papers (2024-05-07T17:44:54Z) - Dual-stage optimizer for systematic overestimation adjustment applied to
multi-objective genetic algorithms for biomarker selection [0.18648070031379424]
Biomarker identification with feature selection methods can be addressed as a multi-objective problem with trade-offs between predictive ability and parsimony in the number of features.
We propose DOSA-MO, a novel multi-objective optimization wrapper algorithm that learns how the original estimation, its variance, and the feature set size of the solutions predict the overestimation.
arXiv Detail & Related papers (2023-12-27T16:13:14Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
Causal discovery aims to identify causal relationships between features with observational data.
We introduce a new causal feature selection approach that relies on the forward and backward feature selection procedures.
We provide theoretical guarantees on the regression and classification errors for both the exact and the finite-sample cases.
arXiv Detail & Related papers (2023-10-17T08:04:45Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Sequential Attention for Feature Selection [12.89764845700709]
We propose a feature selection algorithm called Sequential Attention that achieves state-of-the-art empirical results for neural networks.
We give theoretical insights into our algorithm for linear regression by showing that an adaptation to this setting is equivalent to the classical Orthogonal Matching Pursuit (OMP) algorithm.
arXiv Detail & Related papers (2022-09-29T15:49:06Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
We propose a fast unsupervised feature selection method, named as, Compactness Score (CSUFS) to select desired features.
Our proposed algorithm seems to be more accurate and efficient compared with existing algorithms.
arXiv Detail & Related papers (2022-01-31T13:01:37Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - Feature Selection Using Reinforcement Learning [0.0]
The space of variables or features that can be used to characterize a particular predictor of interest continues to grow exponentially.
Identifying the most characterizing features that minimizes the variance without jeopardizing the bias of our models is critical to successfully training a machine learning model.
arXiv Detail & Related papers (2021-01-23T09:24:37Z) - A Novel Community Detection Based Genetic Algorithm for Feature
Selection [3.8848561367220276]
Authors propose a genetic algorithm based on community detection, which functions in three steps.
Nine benchmark classification problems were analyzed in terms of the performance of the presented approach.
arXiv Detail & Related papers (2020-08-08T15:39:30Z) - Landscape-Aware Fixed-Budget Performance Regression and Algorithm
Selection for Modular CMA-ES Variants [1.0965065178451106]
We show that it is possible to achieve high-quality performance predictions with off-the-shelf supervised learning approaches.
We test this approach on a portfolio of very similar algorithms, which we choose from the family of modular CMA-ES algorithms.
arXiv Detail & Related papers (2020-06-17T13:34:57Z) - Stepwise Model Selection for Sequence Prediction via Deep Kernel
Learning [100.83444258562263]
We propose a novel Bayesian optimization (BO) algorithm to tackle the challenge of model selection in this setting.
In order to solve the resulting multiple black-box function optimization problem jointly and efficiently, we exploit potential correlations among black-box functions.
We are the first to formulate the problem of stepwise model selection (SMS) for sequence prediction, and to design and demonstrate an efficient joint-learning algorithm for this purpose.
arXiv Detail & Related papers (2020-01-12T09:42:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.