Landscape-Aware Fixed-Budget Performance Regression and Algorithm
Selection for Modular CMA-ES Variants
- URL: http://arxiv.org/abs/2006.09855v1
- Date: Wed, 17 Jun 2020 13:34:57 GMT
- Title: Landscape-Aware Fixed-Budget Performance Regression and Algorithm
Selection for Modular CMA-ES Variants
- Authors: Anja Jankovic and Carola Doerr
- Abstract summary: We show that it is possible to achieve high-quality performance predictions with off-the-shelf supervised learning approaches.
We test this approach on a portfolio of very similar algorithms, which we choose from the family of modular CMA-ES algorithms.
- Score: 1.0965065178451106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated algorithm selection promises to support the user in the decisive
task of selecting a most suitable algorithm for a given problem. A common
component of these machine-trained techniques are regression models which
predict the performance of a given algorithm on a previously unseen problem
instance. In the context of numerical black-box optimization, such regression
models typically build on exploratory landscape analysis (ELA), which
quantifies several characteristics of the problem. These measures can be used
to train a supervised performance regression model.
First steps towards ELA-based performance regression have been made in the
context of a fixed-target setting. In many applications, however, the user
needs to select an algorithm that performs best within a given budget of
function evaluations. Adopting this fixed-budget setting, we demonstrate that
it is possible to achieve high-quality performance predictions with
off-the-shelf supervised learning approaches, by suitably combining two
differently trained regression models. We test this approach on a very
challenging problem: algorithm selection on a portfolio of very similar
algorithms, which we choose from the family of modular CMA-ES algorithms.
Related papers
- A Survey of Meta-features Used for Automated Selection of Algorithms for Black-box Single-objective Continuous Optimization [4.173197621837912]
We conduct an overview of the key contributions to algorithm selection in the field of single-objective continuous black-box optimization.
We study machine learning models for automated algorithm selection, configuration, and performance prediction.
arXiv Detail & Related papers (2024-06-08T11:11:14Z) - Improving Sample Efficiency of Model-Free Algorithms for Zero-Sum Markov Games [66.2085181793014]
We show that a model-free stage-based Q-learning algorithm can enjoy the same optimality in the $H$ dependence as model-based algorithms.
Our algorithm features a key novel design of updating the reference value functions as the pair of optimistic and pessimistic value functions.
arXiv Detail & Related papers (2023-08-17T08:34:58Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - The Importance of Landscape Features for Performance Prediction of
Modular CMA-ES Variants [2.3823600586675724]
Recent studies show that supervised machine learning methods can predict algorithm performance using landscape features extracted from the problem instances.
We consider the modular CMA-ES framework and estimate how much each landscape feature contributes to the best algorithm performance regression models.
arXiv Detail & Related papers (2022-04-15T11:55:28Z) - Trajectory-based Algorithm Selection with Warm-starting [2.3823600586675724]
We study the quality and accuracy of performance regression and algorithm selection models in the scenario of predicting different algorithm performances.
We show promising performance of the trajectory-based per-run algorithm selection with warm-starting.
arXiv Detail & Related papers (2022-04-13T14:00:55Z) - Explainable Landscape Analysis in Automated Algorithm Performance
Prediction [0.0]
We investigate the expressiveness of problem landscape features utilized by different supervised machine learning models in automated algorithm performance prediction.
The experimental results point out that the selection of the supervised ML method is crucial, since different supervised ML regression models utilize the problem landscape features differently.
arXiv Detail & Related papers (2022-03-22T15:54:17Z) - RoMA: Robust Model Adaptation for Offline Model-based Optimization [115.02677045518692]
We consider the problem of searching an input maximizing a black-box objective function given a static dataset of input-output queries.
A popular approach to solving this problem is maintaining a proxy model that approximates the true objective function.
Here, the main challenge is how to avoid adversarially optimized inputs during the search.
arXiv Detail & Related papers (2021-10-27T05:37:12Z) - Personalizing Performance Regression Models to Black-Box Optimization
Problems [0.755972004983746]
In this work, we propose a personalized regression approach for numerical optimization problems.
We also investigate the impact of selecting not a single regression model per problem, but personalized ensembles.
We test our approach on predicting the performance of numerical optimizations on the BBOB benchmark collection.
arXiv Detail & Related papers (2021-04-22T11:47:47Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z) - Stepwise Model Selection for Sequence Prediction via Deep Kernel
Learning [100.83444258562263]
We propose a novel Bayesian optimization (BO) algorithm to tackle the challenge of model selection in this setting.
In order to solve the resulting multiple black-box function optimization problem jointly and efficiently, we exploit potential correlations among black-box functions.
We are the first to formulate the problem of stepwise model selection (SMS) for sequence prediction, and to design and demonstrate an efficient joint-learning algorithm for this purpose.
arXiv Detail & Related papers (2020-01-12T09:42:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.