Branch & Learn for Recursively and Iteratively Solvable Problems in
Predict+Optimize
- URL: http://arxiv.org/abs/2205.01672v1
- Date: Sun, 1 May 2022 08:41:30 GMT
- Title: Branch & Learn for Recursively and Iteratively Solvable Problems in
Predict+Optimize
- Authors: Xinyi Hu, Jasper C.H. Lee, Jimmy H.M. Lee and Allen Z. Zhong
- Abstract summary: This paper proposes Branch & Learn, a framework for Predict+ to tackle optimization problems containing parameters that are unknown at the time of solving.
Our framework applies also to iterative algorithms by viewing them as a degenerate form of recursion.
- Score: 9.772500430303285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes Branch & Learn, a framework for Predict+Optimize to
tackle optimization problems containing parameters that are unknown at the time
of solving. Given an optimization problem solvable by a recursive algorithm
satisfying simple conditions, we show how a corresponding learning algorithm
can be constructed directly and methodically from the recursive algorithm. Our
framework applies also to iterative algorithms by viewing them as a degenerate
form of recursion. Extensive experimentation shows better performance for our
proposal over classical and state-of-the-art approaches.
Related papers
- Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Bayesian Design Principles for Frequentist Sequential Learning [11.421942894219901]
We develop a theory to optimize the frequentist regret for sequential learning problems.
We propose a novel optimization approach to generate "algorithmic beliefs" at each round.
We present a novel algorithm for multi-armed bandits that achieves the "best-of-all-worlds" empirical performance.
arXiv Detail & Related papers (2023-10-01T22:17:37Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Optimizing NOTEARS Objectives via Topological Swaps [41.18829644248979]
In this paper, we develop an effective method for a set of candidate algorithms.
At the inner level, given a subject, we utilize off-the-the-art constraints.
The proposed method significantly improves the score of other algorithms.
arXiv Detail & Related papers (2023-05-26T21:49:37Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Learning Primal Heuristics for Mixed Integer Programs [5.766851255770718]
We investigate whether effective primals can be automatically learned via machine learning.
We propose a new method to represent an optimization problem as a graph, and train a Graph Conal Network on solved problem instances with known optimal solutions.
The prediction of variable solutions is then leveraged by a novel configuration of the B&B method, Probabilistic Branching with guided Depth-first Search.
arXiv Detail & Related papers (2021-07-02T06:46:23Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - PAMELI: A Meta-Algorithm for Computationally Expensive Multi-Objective
Optimization Problems [0.0]
The proposed algorithm is based on solving a set of surrogate problems defined by models of the real one.
Our algorithm also performs a meta-search for optimal surrogate models and navigation strategies for the optimization landscape.
arXiv Detail & Related papers (2021-03-19T11:18:03Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
We introduce a novel algorithm improving over the state-of-the-art along multiple dimensions.
We establish minimax optimality for any learning horizon in the special case of non-contextual linear bandits.
arXiv Detail & Related papers (2020-10-23T09:12:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.