PAMELI: A Meta-Algorithm for Computationally Expensive Multi-Objective
Optimization Problems
- URL: http://arxiv.org/abs/2103.10736v1
- Date: Fri, 19 Mar 2021 11:18:03 GMT
- Title: PAMELI: A Meta-Algorithm for Computationally Expensive Multi-Objective
Optimization Problems
- Authors: Santiago Cuervo, Miguel Melgarejo, Angie Blanco-Ca\~non, Laura
Reyes-Fajardo, Sergio Rojas-Galeano
- Abstract summary: The proposed algorithm is based on solving a set of surrogate problems defined by models of the real one.
Our algorithm also performs a meta-search for optimal surrogate models and navigation strategies for the optimization landscape.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an algorithm for multi-objective optimization of computationally
expensive problems. The proposed algorithm is based on solving a set of
surrogate problems defined by models of the real one, so that only solutions
estimated to be approximately Pareto-optimal are evaluated using the real
expensive functions. Aside of the search for solutions, our algorithm also
performs a meta-search for optimal surrogate models and navigation strategies
for the optimization landscape, therefore adapting the search strategy for
solutions to the problem as new information about it is obtained. The
competitiveness of our approach is demonstrated by an experimental comparison
with one state-of-the-art surrogate-assisted evolutionary algorithm on a set of
benchmark problems.
Related papers
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Unraveling the Versatility and Impact of Multi-Objective Optimization: Algorithms, Applications, and Trends for Solving Complex Real-World Problems [4.023511716339818]
Multi-Objective Optimization (MOO) techniques have become increasingly popular in recent years.
This paper examines recently developed MOO-based algorithms.
In real-world case studies, MOO algorithms address complicated decision-making challenges.
arXiv Detail & Related papers (2024-06-29T15:19:46Z) - A Survey of Meta-features Used for Automated Selection of Algorithms for Black-box Single-objective Continuous Optimization [4.173197621837912]
We conduct an overview of the key contributions to algorithm selection in the field of single-objective continuous black-box optimization.
We study machine learning models for automated algorithm selection, configuration, and performance prediction.
arXiv Detail & Related papers (2024-06-08T11:11:14Z) - Effective anytime algorithm for multiobjective combinatorial optimization problems [3.2061579211871383]
A set of efficient solutions that are well-spread in the objective space is preferred to provide the decision maker with a great variety of solutions.
We propose a new exact algorithm for multiobjective optimization combining three novel ideas to enhance the anytime behavior.
arXiv Detail & Related papers (2024-02-06T11:53:44Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
Metaheuristics are universal optimization algorithms which should be used for solving difficult problems, unsolvable by classic approaches.
In this paper we aim at constructing novel socio-cognitive metaheuristic based on castes, and apply several versions of this algorithm to optimization of time-delay system model.
arXiv Detail & Related papers (2022-10-23T22:21:10Z) - GPSAF: A Generalized Probabilistic Surrogate-Assisted Framework for
Constrained Single- and Multi-objective Optimization [7.8140593450932965]
This paper proposes a generalized probabilistic surrogate-assisted framework (GPSAF)
GPSAF is applicable to a broad category of unconstrained and constrained, single- and multi-objective optimization algorithms.
arXiv Detail & Related papers (2022-04-06T13:22:30Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
We present an end-to-end method to learn the proximal operator across non-family problems.
We show that for weakly-ized objectives and under mild conditions, the method converges globally.
arXiv Detail & Related papers (2022-01-28T05:53:28Z) - A novel multiobjective evolutionary algorithm based on decomposition and
multi-reference points strategy [14.102326122777475]
Multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been regarded as a significantly promising approach for solving multiobjective optimization problems (MOPs)
We propose an improved MOEA/D algorithm by virtue of the well-known Pascoletti-Serafini scalarization method and a new strategy of multi-reference points.
arXiv Detail & Related papers (2021-10-27T02:07:08Z) - An Overview and Experimental Study of Learning-based Optimization
Algorithms for Vehicle Routing Problem [49.04543375851723]
Vehicle routing problem (VRP) is a typical discrete optimization problem.
Many studies consider learning-based optimization algorithms to solve VRP.
This paper reviews recent advances in this field and divides relevant approaches into end-to-end approaches and step-by-step approaches.
arXiv Detail & Related papers (2021-07-15T02:13:03Z) - Follow the bisector: a simple method for multi-objective optimization [65.83318707752385]
We consider optimization problems, where multiple differentiable losses have to be minimized.
The presented method computes descent direction in every iteration to guarantee equal relative decrease of objective functions.
arXiv Detail & Related papers (2020-07-14T09:50:33Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.