論文の概要: Lifelong Ensemble Learning based on Multiple Representations for
Few-Shot Object Recognition
- arxiv url: http://arxiv.org/abs/2205.01982v4
- Date: Mon, 1 May 2023 09:37:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-02 20:06:21.157915
- Title: Lifelong Ensemble Learning based on Multiple Representations for
Few-Shot Object Recognition
- Title(参考訳): Few-Shotオブジェクト認識のための複数表現に基づく生涯アンサンブル学習
- Authors: Hamidreza Kasaei, Songsong Xiong
- Abstract要約: 本稿では,複数表現に基づく一生涯のアンサンブル学習手法を提案する。
生涯学習を容易にするため、各アプローチは、オブジェクト情報を即座に保存して検索するメモリユニットを備える。
提案手法の有効性を,オフラインおよびオープンエンドシナリオで評価するために,幅広い実験を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Service robots are integrating more and more into our daily lives to help us
with various tasks. In such environments, robots frequently face new objects
while working in the environment and need to learn them in an open-ended
fashion. Furthermore, such robots must be able to recognize a wide range of
object categories. In this paper, we present a lifelong ensemble learning
approach based on multiple representations to address the few-shot object
recognition problem. In particular, we form ensemble methods based on deep
representations and handcrafted 3D shape descriptors. To facilitate lifelong
learning, each approach is equipped with a memory unit for storing and
retrieving object information instantly. The proposed model is suitable for
open-ended learning scenarios where the number of 3D object categories is not
fixed and can grow over time. We have performed extensive sets of experiments
to assess the performance of the proposed approach in offline, and open-ended
scenarios. For the evaluation purpose, in addition to real object datasets, we
generate a large synthetic household objects dataset consisting of 27000 views
of 90 objects. Experimental results demonstrate the effectiveness of the
proposed method on online few-shot 3D object recognition tasks, as well as its
superior performance over the state-of-the-art open-ended learning approaches.
Furthermore, our results show that while ensemble learning is modestly
beneficial in offline settings, it is significantly beneficial in lifelong
few-shot learning situations. Additionally, we demonstrated the effectiveness
of our approach in both simulated and real-robot settings, where the robot
rapidly learned new categories from limited examples.
- Abstract(参考訳): サービスロボットは、さまざまなタスクを助けるために、日々の生活にますます統合されています。
このような環境では、ロボットは環境の中で作業しながらしばしば新しい物体に直面し、オープンエンドで学習する必要がある。
さらに、このようなロボットは幅広い対象のカテゴリーを認識できなければならない。
本稿では,複数表現に基づく一生涯のアンサンブル学習手法を提案する。
特に,深部表現と手作りの3次元形状記述子に基づくアンサンブル手法を提案する。
生涯学習を容易にするため、各アプローチは、オブジェクト情報を即時に記憶し検索するメモリユニットを備える。
提案モデルは,3次元オブジェクトカテゴリの数が固定されておらず,時間とともに成長可能なオープンエンド学習シナリオに適している。
提案手法の有効性を,オフラインおよびオープンエンドシナリオで評価するために,幅広い実験を行った。
評価目的として,実際のオブジェクトデータセットに加えて,90オブジェクトの27000ビューからなる大規模合成家庭用オブジェクトデータセットを生成する。
実験により,提案手法がオンライン数発の3Dオブジェクト認識タスクに与える影響と,最先端のオープンエンド学習手法よりも優れた性能を示した。
さらに,オフライン環境ではアンサンブル学習がやや有益であるのに対し,生涯の少人数学習では有益であることが示された。
さらに、ロボットが限られた例から新しいカテゴリーを素早く学習するシミュレーションと実ロボット設定の両方において、我々のアプローチの有効性を実証した。
関連論文リスト
- A Survey of Embodied Learning for Object-Centric Robotic Manipulation [27.569063968870868]
オブジェクト中心のロボット操作のための身体学習は、AIの急速に発展し、挑戦的な分野である。
データ駆動機械学習とは異なり、具体化学習は環境との物理的相互作用を通じてロボット学習に焦点を当てる。
論文 参考訳(メタデータ) (2024-08-21T11:32:09Z) - Zero-Shot Object-Centric Representation Learning [72.43369950684057]
ゼロショット一般化のレンズによる現在の対象中心法について検討する。
8つの異なる合成および実世界のデータセットからなるベンチマークを導入する。
多様な実世界の画像のトレーニングにより、見えないシナリオへの転送性が向上することがわかった。
論文 参考訳(メタデータ) (2024-08-17T10:37:07Z) - SUGAR: Pre-training 3D Visual Representations for Robotics [85.55534363501131]
ロボット工学のための新しい3D事前学習フレームワークSUGARを紹介した。
SUGARは3次元の点雲を通してオブジェクトの意味的、幾何学的、および余分な特性をキャプチャする。
SuGARの3D表現は最先端の2Dおよび3D表現よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-04-01T21:23:03Z) - Fine-grained 3D object recognition: an approach and experiments [0.0]
3次元物体認識技術は、自動車の自律運転などの先進技術における中核技術として利用されている。
i)Global Orthographic Object Descriptor (GOOD)のような手作りのアプローチと、(ii)MobileNetやVGGのようなディープラーニングベースのアプローチである。
本稿では,オブジェクトビューを入力とし,カテゴリラベルを出力として生成するオフライン3Dオブジェクト認識システムを最初に実装した。
オフラインの段階では、インスタンスベースの学習(IBL)が新しいものを形成するために使用される
論文 参考訳(メタデータ) (2023-06-28T04:48:21Z) - Visuomotor Control in Multi-Object Scenes Using Object-Aware
Representations [25.33452947179541]
ロボット作業におけるオブジェクト指向表現学習の有効性を示す。
本モデルは,サンプル効率のよい制御ポリシーを学習し,最先端のオブジェクト技術より優れている。
論文 参考訳(メタデータ) (2022-05-12T19:48:11Z) - ObjectFolder: A Dataset of Objects with Implicit Visual, Auditory, and
Tactile Representations [52.226947570070784]
両課題に対処する100のオブジェクトからなるデータセットであるObjectを,2つの重要なイノベーションで紹介する。
まず、オブジェクトは視覚的、聴覚的、触覚的なすべてのオブジェクトの知覚データをエンコードし、多数の多感覚オブジェクト認識タスクを可能にする。
第2に、Objectは統一されたオブジェクト中心のシミュレーションと、各オブジェクトの視覚的テクスチャ、触覚的読み出し、触覚的読み出しに暗黙的な表現を採用しており、データセットの使用が柔軟で共有が容易である。
論文 参考訳(メタデータ) (2021-09-16T14:00:59Z) - RandomRooms: Unsupervised Pre-training from Synthetic Shapes and
Randomized Layouts for 3D Object Detection [138.2892824662943]
有望な解決策は、CADオブジェクトモデルで構成される合成データセットをよりよく利用して、実際のデータセットでの学習を促進することである。
最近の3次元事前学習の研究は、合成物体から他の実世界の応用へ学習した伝達特性が失敗することを示している。
本研究では,この目的を達成するためにRandomRoomsという新しい手法を提案する。
論文 参考訳(メタデータ) (2021-08-17T17:56:12Z) - Simultaneous Multi-View Object Recognition and Grasping in Open-Ended
Domains [0.0]
オープンなオブジェクト認識と把握を同時に行うために,メモリ容量を増強したディープラーニングアーキテクチャを提案する。
シミュレーションと実世界設定の両方において,本手法が未確認のオブジェクトを把握し,現場でのごくわずかな例を用いて,新たなオブジェクトカテゴリを迅速に学習できることを実証する。
論文 参考訳(メタデータ) (2021-06-03T14:12:11Z) - Analysis of voxel-based 3D object detection methods efficiency for
real-time embedded systems [93.73198973454944]
本稿では, ボクセルをベースとした2つの3次元物体検出手法について述べる。
実験の結果,これらの手法は入力点雲が遠距離にあるため,遠距離の小さな物体を検出できないことが確認できた。
この結果から,既存手法の計算のかなりの部分は,検出に寄与しないシーンの位置に着目していることが示唆された。
論文 参考訳(メタデータ) (2021-05-21T12:40:59Z) - REGRAD: A Large-Scale Relational Grasp Dataset for Safe and
Object-Specific Robotic Grasping in Clutter [52.117388513480435]
本稿では,オブジェクト間の関係のモデル化を継続するregradという新しいデータセットを提案する。
データセットは2D画像と3Dポイントクラウドの両方で収集されます。
ユーザは、好きなだけ多くのデータを生成するために、自由に独自のオブジェクトモデルをインポートできる。
論文 参考訳(メタデータ) (2021-04-29T05:31:21Z) - Open-Ended Fine-Grained 3D Object Categorization by Combining Shape and
Texture Features in Multiple Colorspaces [5.89118432388542]
本研究では, 形状情報はすべてのカテゴリの共通パターンを符号化し, テクスチャ情報を用いて各インスタンスの外観を詳細に記述する。
提案したネットワークアーキテクチャは、オブジェクト分類の精度とスケーラビリティの観点から、選択した最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-09-19T14:06:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。