論文の概要: A Framework to Generate High-Quality Datapoints for Multiple Novel
Intent Detection
- arxiv url: http://arxiv.org/abs/2205.02005v1
- Date: Wed, 4 May 2022 11:32:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-05 19:38:20.637845
- Title: A Framework to Generate High-Quality Datapoints for Multiple Novel
Intent Detection
- Title(参考訳): 複数入力検出のための高品質なデータポイント生成フレームワーク
- Authors: Ankan Mullick, Sukannya Purkayastha, Pawan Goyal and Niloy Ganguly
- Abstract要約: MNIDは、予算的な人的アノテーションコストで複数の新しい意図を検出するためのフレームワークである。
精度とF1スコアの点でベースライン法より優れている。
- 参考スコア(独自算出の注目度): 24.14668837496296
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Systems like Voice-command based conversational agents are characterized by a
pre-defined set of skills or intents to perform user specified tasks. In the
course of time, newer intents may emerge requiring retraining. However, the
newer intents may not be explicitly announced and need to be inferred
dynamically. Thus, there are two important tasks at hand (a). identifying
emerging new intents, (b). annotating data of the new intents so that the
underlying classifier can be retrained efficiently. The tasks become specially
challenging when a large number of new intents emerge simultaneously and there
is a limited budget of manual annotation. In this paper, we propose MNID
(Multiple Novel Intent Detection) which is a cluster based framework to detect
multiple novel intents with budgeted human annotation cost. Empirical results
on various benchmark datasets (of different sizes) demonstrate that MNID, by
intelligently using the budget for annotation, outperforms the baseline methods
in terms of accuracy and F1-score.
- Abstract(参考訳): 音声コマンドベースの会話エージェントのようなシステムは、事前に定義されたスキルセットやユーザが指定したタスクを実行する意図によって特徴づけられる。
時間とともに、新たなインテントが再トレーニングを必要とする可能性がある。
しかし、新しい意図は明示的に発表されず、動的に推論する必要がある。
そのため 重要な課題が2つあります
(a)
新たな意図を 特定することです
(b)
下位の分類器を効率的に再訓練できるように、新しいインテントのデータをアノテートする。
タスクは、多数の新しい意図が同時に出現し、手動アノテーションの予算が限られている場合に特別に困難になる。
本稿では,人為的アノテーションのコストを抑えるために,クラスタベースのフレームワークであるMNID(Multiple Novel Intent Detection)を提案する。
さまざまなベンチマークデータセット(サイズが異なる)の実証的な結果から、MNIDは、アノテーションの予算をインテリジェントに使用することにより、精度とF1スコアの点でベースラインメソッドよりも優れています。
関連論文リスト
- IntentGPT: Few-shot Intent Discovery with Large Language Models [9.245106106117317]
我々は、新たな意図が現れると識別できるモデルを開発する。
IntentGPTは、Large Language Models (LLM) を効果的に促し、最小限のラベル付きデータで新しいインテントを発見する、トレーニング不要の手法である。
実験の結果,IntentGPTはドメイン固有データと微調整を必要とする従来の手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-11-16T02:16:59Z) - Exploiting Unlabeled Data with Multiple Expert Teachers for Open Vocabulary Aerial Object Detection and Its Orientation Adaptation [58.37525311718006]
OVAD(Open-vocabulary Aero Object Detection)という,航空物体検出問題の新しい定式化を行った。
本稿では,CLIP-activated students-Teacher DetectionフレームワークであるCastDetを提案する。
本フレームワークは,ロバストなローカライズ教師といくつかのボックス選択戦略を統合し,新しいオブジェクトの高品質な提案を生成する。
論文 参考訳(メタデータ) (2024-11-04T12:59:13Z) - Open-Vocabulary Object Detection with Meta Prompt Representation and Instance Contrastive Optimization [63.66349334291372]
本稿ではメタプロンプトとインスタンスコントラスト学習(MIC)方式を用いたフレームワークを提案する。
まず、クラスとバックグラウンドのプロンプトを学習するプロンプトが新しいクラスに一般化するのを助けるために、新しいクラスエマージシナリオをシミュレートする。
第二に、クラス内コンパクト性とクラス間分離を促進するためのインスタンスレベルのコントラスト戦略を設計し、新しいクラスオブジェクトに対する検出器の一般化に寄与する。
論文 参考訳(メタデータ) (2024-03-14T14:25:10Z) - IntenDD: A Unified Contrastive Learning Approach for Intent Detection
and Discovery [12.905097743551774]
バックボーンを符号化する共有発話を利用した統一手法であるIntenDDを提案する。
IntenDDは完全に教師なしのコントラスト学習戦略を用いて表現学習を行う。
当社のアプローチは,3つのタスクのすべてにおいて,競争上のベースラインを一貫して上回ります。
論文 参考訳(メタデータ) (2023-10-25T16:50:24Z) - Visual Recognition by Request [111.94887516317735]
視覚認識のためのアノテーションと評価の新しいプロトコルを提案する。
すべてのターゲット(オブジェクト、部品など)を一度にアノテート/認識するためにラベルやアルゴリズムを必要とせず、代わりに多数の認識命令を発生させ、アルゴリズムは要求によってターゲットを認識する。
CPP と ADE20K という2つの混合注釈付きデータセットに対する認識システムの評価を行い,その有望な学習能力を部分的にラベル付けしたデータから示す。
論文 参考訳(メタデータ) (2022-07-28T16:55:11Z) - New Intent Discovery with Pre-training and Contrastive Learning [21.25371293641141]
新しい意図発見は、ユーザ発話から新しい意図カテゴリーを明らかにして、サポート対象クラスのセットを拡張することを目的としている。
既存のアプローチは通常、大量のラベル付き発話に依存する。
本稿では,クラスタリングのためのラベルなしデータにおける自己超越的信号を活用するために,新たなコントラスト損失を提案する。
論文 参考訳(メタデータ) (2022-05-25T17:07:25Z) - Incremental-DETR: Incremental Few-Shot Object Detection via
Self-Supervised Learning [60.64535309016623]
本稿では,DeTRオブジェクト検出器上での微調整および自己教師型学習によるインクリメンタル・デクリメンタル・デクリメンタル・デクリメンタル・オブジェクト検出を提案する。
まず,DeTRのクラス固有のコンポーネントを自己監督で微調整する。
さらに,DeTRのクラス固有のコンポーネントに知識蒸留を施した数発の微調整戦略を導入し,破滅的な忘れを伴わずに新しいクラスを検出するネットワークを奨励する。
論文 参考訳(メタデータ) (2022-05-09T05:08:08Z) - Detection, Disambiguation, Re-ranking: Autoregressive Entity Linking as
a Multi-Task Problem [46.028180604304985]
本稿では,2つの補助的なタスクで訓練された自己回帰エンティティリンクモデルを提案する。
我々は,2つの補助課題のそれぞれがパフォーマンスを向上し,再ランク付けが増加の重要な要因であることをアブレーション研究を通して示す。
論文 参考訳(メタデータ) (2022-04-12T17:55:22Z) - Continuous representations of intents for dialogue systems [10.031004070657122]
最近まで、焦点は固定された、離散的な多くの意図を検出することであった。
近年,ゼロショット学習の文脈において,無意識の意図検出に関するいくつかの研究が行われている。
本稿では,専門家のIntent Spaceに意図を連続的に配置する新しいモデルを提案する。
論文 参考訳(メタデータ) (2021-05-08T15:08:20Z) - Query Understanding via Intent Description Generation [75.64800976586771]
問合せ理解のためのQ2ID(Query-to-Intent-Description)タスクを提案する。
クエリとその記述を利用してドキュメントの関連性を計算する既存のランキングタスクとは異なり、Q2IDは自然言語のインテント記述を生成するための逆タスクである。
Q2IDタスクにおける複数の最先端生成モデルとの比較により,本モデルの有効性を実証する。
論文 参考訳(メタデータ) (2020-08-25T08:56:40Z) - Efficient Intent Detection with Dual Sentence Encoders [53.16532285820849]
本稿では,USE や ConveRT などの事前訓練された二重文エンコーダによるインテント検出手法を提案する。
提案するインテント検出器の有用性と適用性を示し,完全なBERT-Largeモデルに基づくインテント検出器よりも優れた性能を示す。
コードだけでなく、新しい挑戦的な単一ドメイン意図検出データセットもリリースしています。
論文 参考訳(メタデータ) (2020-03-10T15:33:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。