論文の概要: Improve Discourse Dependency Parsing with Contextualized Representations
- arxiv url: http://arxiv.org/abs/2205.02090v1
- Date: Wed, 4 May 2022 14:35:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-05 13:35:51.298306
- Title: Improve Discourse Dependency Parsing with Contextualized Representations
- Title(参考訳): 文脈表現による談話依存構文解析の改善
- Authors: Yifei Zhou, Yansong Feng
- Abstract要約: 本稿では,異なるレベルの単位の文脈化表現を符号化するトランスフォーマーの活用を提案する。
記事間で共通に共有される記述パターンの観察に動機付けられ,談話関係の識別をシーケンスラベリングタスクとして扱う新しい手法を提案する。
- 参考スコア(独自算出の注目度): 28.916249926065273
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent works show that discourse analysis benefits from modeling intra- and
inter-sentential levels separately, where proper representations for text units
of different granularities are desired to capture both the meaning of text
units and their relations to the context. In this paper, we propose to take
advantage of transformers to encode contextualized representations of units of
different levels to dynamically capture the information required for discourse
dependency analysis on intra- and inter-sentential levels. Motivated by the
observation of writing patterns commonly shared across articles, we propose a
novel method that treats discourse relation identification as a sequence
labelling task, which takes advantage of structural information from the
context of extracted discourse trees, and substantially outperforms traditional
direct-classification methods. Experiments show that our model achieves
state-of-the-art results on both English and Chinese datasets.
- Abstract(参考訳): 最近の研究によれば、談話分析は、異なる粒度のテキスト単位に対する適切な表現が、テキスト単位の意味と文脈との関係の両方を捉えるために望まれる、内的および間的レベルを別々にモデル化することの恩恵を受けている。
本稿では,異なるレベルの単位の文脈的表現を符号化するトランスフォーマーの利点を生かして,対話依存分析に必要な情報を文内および文間レベルで動的に取得する手法を提案する。
論文間で共通に共有される記述パターンの観察により,抽出された談話木の文脈から構造情報を活用し,従来の直分類法よりも大幅に優れる,談話関係識別をシーケンスラベリングタスクとして扱う新しい手法を提案する。
実験の結果,我々のモデルは英語と中国語の両方のデータセットで最先端の結果が得られることがわかった。
関連論文リスト
- Pointer-Guided Pre-Training: Infusing Large Language Models with Paragraph-Level Contextual Awareness [3.2925222641796554]
ポインター誘導セグメントオーダリング(SO)は,段落レベルのテキスト表現の文脈的理解を高めることを目的とした,新しい事前学習手法である。
実験の結果,ポインタ誘導型事前学習は複雑な文書構造を理解する能力を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-06-06T15:17:51Z) - Composition-contrastive Learning for Sentence Embeddings [23.85590618900386]
この作業は、補助的なトレーニング目標や追加のネットワークパラメータのコストを発生させることなく、初めて実施される。
意味的テキスト類似性タスクの実験結果は、最先端のアプローチに匹敵するベースラインの改善を示す。
論文 参考訳(メタデータ) (2023-07-14T14:39:35Z) - Multimodal Relation Extraction with Cross-Modal Retrieval and Synthesis [89.04041100520881]
本研究は,対象物,文,画像全体に基づいて,テキストおよび視覚的証拠を検索することを提案する。
我々は,オブジェクトレベル,画像レベル,文レベル情報を合成し,同一性と異なるモダリティ間の推論を改善する新しい手法を開発した。
論文 参考訳(メタデータ) (2023-05-25T15:26:13Z) - Generating Coherent Narratives by Learning Dynamic and Discrete Entity
States with a Contrastive Framework [68.1678127433077]
我々はトランスフォーマーモデルを拡張して,物語生成のためのエンティティ状態更新と文実現を動的に行う。
2つのナラティブデータセットの実験により、我々のモデルは強いベースラインよりも一貫性があり多様なナラティブを生成できることが示された。
論文 参考訳(メタデータ) (2022-08-08T09:02:19Z) - Multilingual Extraction and Categorization of Lexical Collocations with
Graph-aware Transformers [86.64972552583941]
我々は,グラフ対応トランスフォーマアーキテクチャにより拡張されたBERTに基づくシーケンスタグ付けモデルを提案し,コンテキストにおけるコロケーション認識の課題について評価した。
以上の結果から, モデルアーキテクチャにおける構文的依存関係を明示的に符号化することは有用であり, 英語, スペイン語, フランス語におけるコロケーションのタイプ化の差異について考察する。
論文 参考訳(メタデータ) (2022-05-23T16:47:37Z) - Dependency Induction Through the Lens of Visual Perception [81.91502968815746]
本稿では,単語の具体性を利用した教師なし文法帰納モデルと,構成的視覚に基づく構成的文法を共同学習する手法を提案する。
実験により,提案した拡張は,文法的サイズが小さい場合でも,現在最先端の視覚的接地モデルよりも優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2021-09-20T18:40:37Z) - Matching Visual Features to Hierarchical Semantic Topics for Image
Paragraph Captioning [50.08729005865331]
本稿では,階層的トピック誘導画像段落生成フレームワークを開発した。
複数の抽象レベルでの画像とテキストの相関をキャプチャするために、変分推論ネットワークを設計します。
段落生成を導くために、学習した階層的トピックと視覚的特徴を言語モデルに統合する。
論文 参考訳(メタデータ) (2021-05-10T06:55:39Z) - Understanding Synonymous Referring Expressions via Contrastive Features [105.36814858748285]
画像とオブジェクトインスタンスレベルでのコントラスト機能を学ぶためのエンドツーエンドのトレーニング可能なフレームワークを開発しています。
提案アルゴリズムをいくつかのベンチマークデータセットで評価するための広範囲な実験を行った。
論文 参考訳(メタデータ) (2021-04-20T17:56:24Z) - "Let's Eat Grandma": When Punctuation Matters in Sentence Representation
for Sentiment Analysis [13.873803872380229]
我々は、句読点が感情分析において重要な役割を果たすと論じ、構文的および文脈的パフォーマンスを改善するための新しい表現モデルを提案する。
公開データセットの実験を行い、モデルが他の最先端のベースラインメソッドよりも正確に感情を識別することができることを確認します。
論文 参考訳(メタデータ) (2020-12-10T19:07:31Z) - Contextual Modulation for Relation-Level Metaphor Identification [3.2619536457181075]
本稿では,ある文法的関係の関連レベルの比喩表現を識別するための新しいアーキテクチャを提案する。
視覚的推論の研究にインスパイアされた方法論では、我々のアプローチは、深い文脈化された特徴にニューラルネットワークの計算を条件付けすることに基づいている。
提案したアーキテクチャは,ベンチマークデータセット上で最先端の結果が得られることを示す。
論文 参考訳(メタデータ) (2020-10-12T12:07:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。