論文の概要: MAD: Self-Supervised Masked Anomaly Detection Task for Multivariate Time
Series
- arxiv url: http://arxiv.org/abs/2205.02100v1
- Date: Wed, 4 May 2022 14:55:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-05 14:05:19.166880
- Title: MAD: Self-Supervised Masked Anomaly Detection Task for Multivariate Time
Series
- Title(参考訳): MAD:多変量時系列に対する自己監督型マスケアノマリー検出タスク
- Authors: Yiwei Fu, Feng Xue
- Abstract要約: Masked Anomaly Detection (MAD) は多変量時系列異常検出のための汎用的な自己教師型学習タスクである。
入力の一部をランダムにマスキングしてモデルをトレーニングすることで、MADは従来の左から右への次のステップ予測(NSP)タスクよりも改善される。
実験の結果,MADは従来のNSP法よりも優れた異常検出率が得られることが示された。
- 参考スコア(独自算出の注目度): 14.236092062538653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce Masked Anomaly Detection (MAD), a general
self-supervised learning task for multivariate time series anomaly detection.
With the increasing availability of sensor data from industrial systems, being
able to detecting anomalies from streams of multivariate time series data is of
significant importance. Given the scarcity of anomalies in real-world
applications, the majority of literature has been focusing on modeling
normality. The learned normal representations can empower anomaly detection as
the model has learned to capture certain key underlying data regularities. A
typical formulation is to learn a predictive model, i.e., use a window of time
series data to predict future data values. In this paper, we propose an
alternative self-supervised learning task. By randomly masking a portion of the
inputs and training a model to estimate them using the remaining ones, MAD is
an improvement over the traditional left-to-right next step prediction (NSP)
task. Our experimental results demonstrate that MAD can achieve better anomaly
detection rates over traditional NSP approaches when using exactly the same
neural network (NN) base models, and can be modified to run as fast as NSP
models during test time on the same hardware, thus making it an ideal upgrade
for many existing NSP-based NN anomaly detection models.
- Abstract(参考訳): 本稿では,多変量時系列異常検出のための汎用自己教師型学習タスクであるMasked Anomaly Detection (MAD)を紹介する。
産業システムからのセンサデータの可用性が高まる中、多変量時系列データのストリームから異常を検出することが重要となる。
現実の応用における異常の不足を考えると、文献の大半は正規性をモデル化することに集中している。
学習された正規表現は、モデルが特定の鍵となるデータレギュラーをキャプチャすることを学び、異常検出を促進することができる。
典型的な定式化は予測モデル、すなわち時系列データのウィンドウを使って将来のデータ値を予測することである。
本稿では,代替の自己教師付き学習タスクを提案する。
入力の一部をランダムにマスキングし、残りの部分を使ってモデルを推定するように訓練することにより、MADは従来の左から右への次のステップ予測(NSP)タスクよりも改善される。
実験により,MADはニューラルネットワーク(NN)ベースモデルと全く同じ場合,従来のNSPアプローチよりも優れた異常検出率を達成でき,同じハードウェア上でテスト時間中にNSPモデルと同じくらい高速に動作できるように修正可能であることを示し,既存のNSPベースのNN異常検出モデルに最適なアップグレードとなる。
関連論文リスト
- Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - LARA: A Light and Anti-overfitting Retraining Approach for Unsupervised
Time Series Anomaly Detection [49.52429991848581]
深部変分自動エンコーダに基づく時系列異常検出手法(VAE)のための光・反オーバーフィット学習手法(LARA)を提案する。
本研究の目的は,1) 再学習過程を凸問題として定式化し, 過度に収束できること,2) 履歴データを保存せずに活用するルミネートブロックを設計すること,3) 潜在ベクトルと再構成データの微調整を行うと, 線形形成が基底真実と微調整されたブロックとの誤りを最小に調整できることを数学的に証明することである。
論文 参考訳(メタデータ) (2023-10-09T12:36:16Z) - An LSTM-Based Predictive Monitoring Method for Data with Time-varying
Variability [3.5246670856011035]
本稿では、繰り返し発生するニューラルネットワーク構造がプロセスを監視する能力について考察する。
本研究では,長期短期記憶(LSTM)予測間隔に基づく時間変動データに対する制御チャートを提案する。
提案手法は時系列センサデータにも適用され,本手法が異常検出に有効な手法であることを確認した。
論文 参考訳(メタデータ) (2023-09-05T06:13:09Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
本研究は、オンラインニューロ進化に基づくニューラルアーキテクチャサーチ(ONE-NAS)アルゴリズムを提案する。
ONE-NASは、オンライン予測タスクのためにリカレントニューラルネットワーク(RNN)を自動設計し、動的にトレーニングする新しいニューラルネットワーク探索手法である。
その結果、ONE-NASは従来の統計時系列予測法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-20T22:25:47Z) - Ti-MAE: Self-Supervised Masked Time Series Autoencoders [16.98069693152999]
本稿では,Ti-MAEという新しいフレームワークを提案する。
Ti-MAEは、埋め込み時系列データをランダムにマスクアウトし、オートエンコーダを学び、ポイントレベルでそれらを再構築する。
いくつかの公開実世界のデータセットの実験では、マスク付きオートエンコーディングのフレームワークが生データから直接強力な表現を学習できることが示されている。
論文 参考訳(メタデータ) (2023-01-21T03:20:23Z) - DEGAN: Time Series Anomaly Detection using Generative Adversarial
Network Discriminators and Density Estimation [0.0]
我々は,GANに基づく異常検出フレームワークDEGANを提案する。
これは、適切に構成された識別器(D)をスタンドアロンの異常予測器に訓練するための入力として、通常の時系列データにのみ依存する。
論文 参考訳(メタデータ) (2022-10-05T04:32:12Z) - Deep Generative model with Hierarchical Latent Factors for Time Series
Anomaly Detection [40.21502451136054]
本研究は、時系列異常検出のための新しい生成モデルであるDGHLを提示する。
トップダウンの畳み込みネットワークは、新しい階層的な潜在空間を時系列ウィンドウにマッピングし、時間ダイナミクスを利用して情報を効率的にエンコードする。
提案手法は,4つのベンチマーク・データセットにおいて,現在の最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-02-15T17:19:44Z) - Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals [10.866594993485226]
本稿では,Deep Convolutional Autoencoding Memory Network (CAE-M) という,ディープラーニングに基づく新しい異常検出アルゴリズムを提案する。
我々はまず,最大平均離散値(MMD)を用いたマルチセンサデータの空間依存性を特徴付けるディープ畳み込みオートエンコーダを構築する。
そして,線形(自己回帰モデル)と非線形予測(注意を伴う大規模LSTM)からなるメモリネットワークを構築し,時系列データから時間依存性を捉える。
論文 参考訳(メタデータ) (2021-07-27T06:48:20Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
機械学習(ML)と人工知能(AI)はITシステムの運用とメンテナンスに適用される。
1つの方向は、修復自動化を可能にするために、繰り返し発生する異常タイプを認識することである。
与えられたデータの次元変化に不変な手法を提案する。
論文 参考訳(メタデータ) (2021-02-25T14:24:49Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。