DeepBayes -- an estimator for parameter estimation in stochastic
nonlinear dynamical models
- URL: http://arxiv.org/abs/2205.02264v1
- Date: Wed, 4 May 2022 18:12:17 GMT
- Title: DeepBayes -- an estimator for parameter estimation in stochastic
nonlinear dynamical models
- Authors: Anubhab Ghosh, Mohamed Abdalmoaty, Saikat Chatterjee, H{\aa}kan
Hjalmarsson
- Abstract summary: We propose DeepBayes estimators that leverage the power of deep recurrent neural networks in learning an estimator.
The deep recurrent neural network architectures can be trained offline and ensure significant time savings during inference.
We demonstrate the applicability of our proposed method on different example models and perform detailed comparisons with state-of-the-art approaches.
- Score: 11.917949887615567
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stochastic nonlinear dynamical systems are ubiquitous in modern, real-world
applications. Yet, estimating the unknown parameters of stochastic, nonlinear
dynamical models remains a challenging problem. The majority of existing
methods employ maximum likelihood or Bayesian estimation. However, these
methods suffer from some limitations, most notably the substantial
computational time for inference coupled with limited flexibility in
application. In this work, we propose DeepBayes estimators that leverage the
power of deep recurrent neural networks in learning an estimator. The method
consists of first training a recurrent neural network to minimize the
mean-squared estimation error over a set of synthetically generated data using
models drawn from the model set of interest. The a priori trained estimator can
then be used directly for inference by evaluating the network with the
estimation data. The deep recurrent neural network architectures can be trained
offline and ensure significant time savings during inference. We experiment
with two popular recurrent neural networks -- long short term memory network
(LSTM) and gated recurrent unit (GRU). We demonstrate the applicability of our
proposed method on different example models and perform detailed comparisons
with state-of-the-art approaches. We also provide a study on a real-world
nonlinear benchmark problem. The experimental evaluations show that the
proposed approach is asymptotically as good as the Bayes estimator.
Related papers
- Scalable Bayesian Inference in the Era of Deep Learning: From Gaussian Processes to Deep Neural Networks [0.5827521884806072]
Large neural networks trained on large datasets have become the dominant paradigm in machine learning.
This thesis develops scalable methods to equip neural networks with model uncertainty.
arXiv Detail & Related papers (2024-04-29T23:38:58Z) - A variational neural Bayes framework for inference on intractable posterior distributions [1.0801976288811024]
Posterior distributions of model parameters are efficiently obtained by feeding observed data into a trained neural network.
We show theoretically that our posteriors converge to the true posteriors in Kullback-Leibler divergence.
arXiv Detail & Related papers (2024-04-16T20:40:15Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
Deep Neural Network Network (DNN) models are used for programming purposes.
In this paper we examine the use of convex neural recovery models.
We show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
We also show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
arXiv Detail & Related papers (2023-12-19T23:04:56Z) - Deep Ensembles Meets Quantile Regression: Uncertainty-aware Imputation for Time Series [45.76310830281876]
We propose Quantile Sub-Ensembles, a novel method to estimate uncertainty with ensemble of quantile-regression-based task networks.
Our method not only produces accurate imputations that is robust to high missing rates, but also is computationally efficient due to the fast training of its non-generative model.
arXiv Detail & Related papers (2023-12-03T05:52:30Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
Existing algorithms for uncertainty estimation require modifying the model architecture and training procedure.
This work proposes a new algorithm that can be applied to a given trained neural network and produces approximate prediction intervals.
arXiv Detail & Related papers (2022-05-06T13:18:31Z) - Neural Networks for Parameter Estimation in Intractable Models [0.0]
We show how to estimate parameters from max-stable processes, where inference is exceptionally challenging.
We use data from model simulations as input and train deep neural networks to learn statistical parameters.
arXiv Detail & Related papers (2021-07-29T21:59:48Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Sparsely constrained neural networks for model discovery of PDEs [0.0]
We present a modular framework that determines the sparsity pattern of a deep-learning based surrogate using any sparse regression technique.
We show how a different network architecture and sparsity estimator improve model discovery accuracy and convergence on several benchmark examples.
arXiv Detail & Related papers (2020-11-09T11:02:40Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
We show that a measure of a model's training speed can be used to estimate its marginal likelihood.
We verify our results in model selection tasks for linear models and for the infinite-width limit of deep neural networks.
Our results suggest a promising new direction towards explaining why neural networks trained with gradient descent are biased towards functions that generalize well.
arXiv Detail & Related papers (2020-10-27T17:56:14Z) - Amortized Bayesian Inference for Models of Cognition [0.1529342790344802]
Recent advances in simulation-based inference using specialized neural network architectures circumvent many previous problems of approximate Bayesian computation.
We provide a general introduction to amortized Bayesian parameter estimation and model comparison.
arXiv Detail & Related papers (2020-05-08T08:12:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.