Certified Neural Approximations of Nonlinear Dynamics
- URL: http://arxiv.org/abs/2505.15497v1
- Date: Wed, 21 May 2025 13:22:20 GMT
- Title: Certified Neural Approximations of Nonlinear Dynamics
- Authors: Frederik Baymler Mathiesen, Nikolaus Vertovec, Francesco Fabiano, Luca Laurenti, Alessandro Abate,
- Abstract summary: In safety-critical contexts, the use of neural approximations requires formal bounds on their closeness to the underlying system.<n>We propose a novel, adaptive, and parallelizable verification method based on certified first-order models.
- Score: 52.79163248326912
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks hold great potential to act as approximate models of nonlinear dynamical systems, with the resulting neural approximations enabling verification and control of such systems. However, in safety-critical contexts, the use of neural approximations requires formal bounds on their closeness to the underlying system. To address this fundamental challenge, we propose a novel, adaptive, and parallelizable verification method based on certified first-order models. Our approach provides formal error bounds on the neural approximations of dynamical systems, allowing them to be safely employed as surrogates by interpreting the error bound as bounded disturbances acting on the approximated dynamics. We demonstrate the effectiveness and scalability of our method on a range of established benchmarks from the literature, showing that it outperforms the state-of-the-art. Furthermore, we highlight the flexibility of our framework by applying it to two novel scenarios not previously explored in this context: neural network compression and an autoencoder-based deep learning architecture for learning Koopman operators, both yielding compelling results.
Related papers
- Neural Contraction Metrics with Formal Guarantees for Discrete-Time Nonlinear Dynamical Systems [17.905596843865705]
Contraction metrics provide a powerful framework for analyzing stability, robustness, and convergence of various dynamical systems.<n>However, identifying these metrics for complex nonlinear systems remains an open challenge due to the lack of effective tools.<n>This paper develops verifiable contraction metrics for discrete scalable nonlinear systems.
arXiv Detail & Related papers (2025-04-23T21:27:32Z) - Probabilistic Decomposed Linear Dynamical Systems for Robust Discovery of Latent Neural Dynamics [5.841659874892801]
Time-varying linear state-space models are powerful tools for obtaining mathematically interpretable representations of neural signals.
Existing methods for latent variable estimation are not robust to dynamical noise and system nonlinearity.
We propose a probabilistic approach to latent variable estimation in decomposed models that improves robustness against dynamical noise.
arXiv Detail & Related papers (2024-08-29T18:58:39Z) - Compositional Curvature Bounds for Deep Neural Networks [7.373617024876726]
A key challenge that threatens the widespread use of neural networks in safety-critical applications is their vulnerability to adversarial attacks.
We study the second-order behavior of continuously differentiable deep neural networks, focusing on robustness against adversarial perturbations.
We introduce a novel algorithm to analytically compute provable upper bounds on the second derivative of neural networks.
arXiv Detail & Related papers (2024-06-07T17:50:15Z) - Neuro-symbolic model for cantilever beams damage detection [0.0]
We propose a neuro-symbolic model for the detection of damages in cantilever beams based on a novel cognitive architecture.
The hybrid discriminative model is introduced under the name Logic Convolutional Neural Regressor.
arXiv Detail & Related papers (2023-05-04T13:12:39Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling.
We show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics.
arXiv Detail & Related papers (2023-02-11T21:07:30Z) - Neural Abstractions [72.42530499990028]
We present a novel method for the safety verification of nonlinear dynamical models that uses neural networks to represent abstractions of their dynamics.
We demonstrate that our approach performs comparably to the mature tool Flow* on existing benchmark nonlinear models.
arXiv Detail & Related papers (2023-01-27T12:38:09Z) - Maximum entropy exploration in contextual bandits with neural networks
and energy based models [63.872634680339644]
We present two classes of models, one with neural networks as reward estimators, and the other with energy based models.
We show that both techniques outperform well-known standard algorithms, where energy based models have the best overall performance.
This provides practitioners with new techniques that perform well in static and dynamic settings, and are particularly well suited to non-linear scenarios with continuous action spaces.
arXiv Detail & Related papers (2022-10-12T15:09:45Z) - Constrained Block Nonlinear Neural Dynamical Models [1.3163098563588727]
Neural network modules conditioned by known priors can be effectively trained and combined to represent systems with nonlinear dynamics.
The proposed method consists of neural network blocks that represent input, state, and output dynamics with constraints placed on the network weights and system variables.
We evaluate the performance of the proposed architecture and training methods on system identification tasks for three nonlinear systems.
arXiv Detail & Related papers (2021-01-06T04:27:54Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.