PI-NLF: A Proportional-Integral Approach for Non-negative Latent Factor
Analysis
- URL: http://arxiv.org/abs/2205.02591v1
- Date: Thu, 5 May 2022 12:04:52 GMT
- Title: PI-NLF: A Proportional-Integral Approach for Non-negative Latent Factor
Analysis
- Authors: Ye Yuan and Xin Luo
- Abstract summary: A non-negative latent factor (NLF) model performs efficient representation learning to an HDI matrix.
A PI-NLF model outperforms the state-of-the-art models in both computational efficiency and estimation accuracy for missing data of an HDI matrix.
- Score: 9.087387628717952
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A high-dimensional and incomplete (HDI) matrix frequently appears in various
big-data-related applications, which demonstrates the inherently non-negative
interactions among numerous nodes. A non-negative latent factor (NLF) model
performs efficient representation learning to an HDI matrix, whose learning
process mostly relies on a single latent factor-dependent, non-negative and
multiplicative update (SLF-NMU) algorithm. However, an SLF-NMU algorithm
updates a latent factor based on the current update increment only without
appropriate considerations of past learning information, resulting in slow
convergence. Inspired by the prominent success of a proportional-integral (PI)
controller in various applications, this paper proposes a
Proportional-Integral-incorporated Non-negative Latent Factor (PI-NLF) model
with two-fold ideas: a) establishing an Increment Refinement (IR) mechanism via
considering the past update increments following the principle of a PI
controller; and b) designing an IR-based SLF-NMU (ISN) algorithm to accelerate
the convergence rate of a resultant model. Empirical studies on four HDI
datasets demonstrate that a PI-NLF model outperforms the state-of-the-art
models in both computational efficiency and estimation accuracy for missing
data of an HDI matrix. Hence, this study unveils the feasibility of boosting
the performance of a non-negative learning algorithm through an error feedback
controller.
Related papers
- A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Efficient Interpretable Nonlinear Modeling for Multiple Time Series [5.448070998907116]
This paper proposes an efficient nonlinear modeling approach for multiple time series.
It incorporates nonlinear interactions among different time-series variables.
Experimental results show that the proposed algorithm improves the identification of the support of the VAR coefficients in a parsimonious manner.
arXiv Detail & Related papers (2023-09-29T11:42:59Z) - Regularizing with Pseudo-Negatives for Continual Self-Supervised Learning [62.40718385934608]
We introduce a novel Pseudo-Negative Regularization (PNR) framework for effective continual self-supervised learning (CSSL)
Our PNR leverages pseudo-negatives obtained through model-based augmentation in a way that newly learned representations may not contradict what has been learned in the past.
arXiv Detail & Related papers (2023-06-08T10:59:35Z) - Proximal Symmetric Non-negative Latent Factor Analysis: A Novel Approach
to Highly-Accurate Representation of Undirected Weighted Networks [2.1797442801107056]
Undirected Weighted Network (UWN) is commonly found in big data-related applications.
Existing models fail in either modeling its intrinsic symmetry or low-data density.
Proximal Symmetric Nonnegative Latent-factor-analysis model is proposed.
arXiv Detail & Related papers (2023-06-06T13:03:24Z) - Understanding Augmentation-based Self-Supervised Representation Learning
via RKHS Approximation and Regression [53.15502562048627]
Recent work has built the connection between self-supervised learning and the approximation of the top eigenspace of a graph Laplacian operator.
This work delves into a statistical analysis of augmentation-based pretraining.
arXiv Detail & Related papers (2023-06-01T15:18:55Z) - Fast Latent Factor Analysis via a Fuzzy PID-Incorporated Stochastic
Gradient Descent Algorithm [1.984879854062214]
A gradient descent (SGD)-based latent factor analysis model is remarkably effective in extracting valuable information from an HDI matrix.
A standard SGD algorithm learns a latent factor relying on the gradient of current instance error only without considering past update information.
This paper proposes a Fuzzy PID-incorporated SGD algorithm with two-fold ideas: 1) rebuilding the instance error by considering the past update information in an efficient way following the principle of PID, and 2) implementing hyper-learnings and gain adaptation following the fuzzy rules.
arXiv Detail & Related papers (2023-03-07T14:51:09Z) - A Nonlinear PID-Enhanced Adaptive Latent Factor Analysis Model [6.2303427193075755]
High-dimensional and incomplete (HDI) data holds tremendous interactive information in various industrial applications.
A latent factor (LF) model is remarkably effective in extracting valuable information from HDI data with decent gradient (SGD) algorithm.
An SGD-based LFA model suffers from slow convergence since it only considers the current learning error.
arXiv Detail & Related papers (2022-08-04T07:48:19Z) - Adaptive Divergence-based Non-negative Latent Factor Analysis [6.265179945530255]
This study presents an Adaptive Divergence-based Non-negative Latent Factor (ADNLF) model with three-fold ideas.
An ADNLF model achieves significantly higher estimation accuracy for missing data of an HDI dataset with high computational efficiency.
arXiv Detail & Related papers (2022-03-30T11:28:36Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.