Proximal Symmetric Non-negative Latent Factor Analysis: A Novel Approach
to Highly-Accurate Representation of Undirected Weighted Networks
- URL: http://arxiv.org/abs/2306.03647v1
- Date: Tue, 6 Jun 2023 13:03:24 GMT
- Title: Proximal Symmetric Non-negative Latent Factor Analysis: A Novel Approach
to Highly-Accurate Representation of Undirected Weighted Networks
- Authors: Yurong Zhong, Zhe Xie, Weiling Li, and Xin Luo
- Abstract summary: Undirected Weighted Network (UWN) is commonly found in big data-related applications.
Existing models fail in either modeling its intrinsic symmetry or low-data density.
Proximal Symmetric Nonnegative Latent-factor-analysis model is proposed.
- Score: 2.1797442801107056
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An Undirected Weighted Network (UWN) is commonly found in big data-related
applications. Note that such a network's information connected with its nodes,
and edges can be expressed as a Symmetric, High-Dimensional and Incomplete
(SHDI) matrix. However, existing models fail in either modeling its intrinsic
symmetry or low-data density, resulting in low model scalability or
representation learning ability. For addressing this issue, a Proximal
Symmetric Nonnegative Latent-factor-analysis (PSNL) model is proposed. It
incorporates a proximal term into symmetry-aware and data density-oriented
objective function for high representation accuracy. Then an adaptive
Alternating Direction Method of Multipliers (ADMM)-based learning scheme is
implemented through a Tree-structured of Parzen Estimators (TPE) method for
high computational efficiency. Empirical studies on four UWNs demonstrate that
PSNL achieves higher accuracy gain than state-of-the-art models, as well as
highly competitive computational efficiency.
Related papers
- Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
We propose an effective method called Latent Semantic Consensus (LSC)
LSC formulates the model fitting problem into two latent semantic spaces based on data points and model hypotheses.
LSC is able to provide consistent and reliable solutions within only a few milliseconds for general multi-structural model fitting.
arXiv Detail & Related papers (2024-03-11T05:35:38Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - An Unconstrained Symmetric Nonnegative Latent Factor Analysis for
Large-scale Undirected Weighted Networks [0.22940141855172036]
Large-scale undirected weighted networks are usually found in big data-related research fields.
A symmetric non-negative latent-factor-analysis model is able to efficiently extract latent factors from an SHDI matrix.
This paper proposes an unconstrained symmetric nonnegative latent-factor-analysis model.
arXiv Detail & Related papers (2022-08-09T14:40:12Z) - PI-NLF: A Proportional-Integral Approach for Non-negative Latent Factor
Analysis [9.087387628717952]
A non-negative latent factor (NLF) model performs efficient representation learning to an HDI matrix.
A PI-NLF model outperforms the state-of-the-art models in both computational efficiency and estimation accuracy for missing data of an HDI matrix.
arXiv Detail & Related papers (2022-05-05T12:04:52Z) - PCENet: High Dimensional Surrogate Modeling for Learning Uncertainty [15.781915567005251]
We present a novel surrogate model for representation learning and uncertainty quantification.
The proposed model combines a neural network approach for dimensionality reduction of the (potentially high-dimensional) data, with a surrogate model method for learning the data distribution.
Our model enables us to (a) learn a representation of the data, (b) estimate uncertainty in the high-dimensional data system, and (c) match high order moments of the output distribution.
arXiv Detail & Related papers (2022-02-10T14:42:51Z) - Nonparametric Functional Analysis of Generalized Linear Models Under
Nonlinear Constraints [0.0]
This article introduces a novel nonparametric methodology for Generalized Linear Models.
It combines the strengths of the binary regression and latent variable formulations for categorical data.
It extends recently published parametric versions of the methodology and generalizes it.
arXiv Detail & Related papers (2021-10-11T04:49:59Z) - Post-mortem on a deep learning contest: a Simpson's paradox and the
complementary roles of scale metrics versus shape metrics [61.49826776409194]
We analyze a corpus of models made publicly-available for a contest to predict the generalization accuracy of neural network (NN) models.
We identify what amounts to a Simpson's paradox: where "scale" metrics perform well overall but perform poorly on sub partitions of the data.
We present two novel shape metrics, one data-independent, and the other data-dependent, which can predict trends in the test accuracy of a series of NNs.
arXiv Detail & Related papers (2021-06-01T19:19:49Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
Inference in discrete graphical models with variational methods is difficult.
Many sampling-based methods have been proposed for estimating Evidence Lower Bound (ELBO)
We propose a new approach that leverages the tractability of probabilistic circuit models, such as Sum Product Networks (SPN)
We show that selective-SPNs are suitable as an expressive variational distribution, and prove that when the log-density of the target model is aweighted the corresponding ELBO can be computed analytically.
arXiv Detail & Related papers (2020-10-22T05:04:38Z) - Estimating Model Uncertainty of Neural Networks in Sparse Information
Form [39.553268191681376]
We present a sparse representation of model uncertainty for Deep Neural Networks (DNNs)
The key insight of our work is that the information matrix tends to be sparse in its spectrum.
We show that the information form can be scalably applied to represent model uncertainty in DNNs.
arXiv Detail & Related papers (2020-06-20T18:09:59Z) - Deep Dimension Reduction for Supervised Representation Learning [51.10448064423656]
We propose a deep dimension reduction approach to learning representations with essential characteristics.
The proposed approach is a nonparametric generalization of the sufficient dimension reduction method.
We show that the estimated deep nonparametric representation is consistent in the sense that its excess risk converges to zero.
arXiv Detail & Related papers (2020-06-10T14:47:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.