Reduced Density Matrix Functional Theory for Bosons: Foundations and
Applications
- URL: http://arxiv.org/abs/2205.02635v1
- Date: Thu, 5 May 2022 13:28:18 GMT
- Title: Reduced Density Matrix Functional Theory for Bosons: Foundations and
Applications
- Authors: Julia Liebert
- Abstract summary: This thesis aims to initiate and establish a bosonic RDMFT for both ground state and excited state energy calculations.
Motivated by the Onsager and Penrose criterion, we derive the universal functional for a homogeneous Bose-Einstein condensates (BECs) in the Bogoliubov regime.
In the second part of the thesis, we propose and work out an ensemble RDMFT targeting excitations in bosonic quantum systems.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Density functional theory constitutes the workhorse of modern electronic
structure calculations due to its favourable computational cost despite the
fact that it usually fails to describe strongly correlated systems. A
particularly promising approach to overcome those difficulties is reduced
density matrix functional theory (RDMFT): It abandons the complexity of the
$N$-particle wave function and at the same time explicitly allows for
fractional occupation numbers. It is the goal of this thesis to initiate and
establish a bosonic RDMFT for both ground state and excited state energy
calculations. Motivated by the Onsager and Penrose criterion which identifies
RDMFT as a particularly suitable approach to describe Bose-Einstein condensates
(BECs), we derive the universal functional for a homogeneous BEC in the
Bogoliubov regime. Remarkably, the gradient of the universal functional is
found to diverge repulsively in the regime of complete condensation. This
introduces the new concept of a BEC force, which provides a universal
explanation for quantum depletion since it is merely based on the geometry of
quantum states. In the second part of the thesis, we propose and work out an
ensemble RDMFT targeting excitations in bosonic quantum systems. This endeavour
further highlights the potential of convex analysis for the development of
functional theories in the future. Indeed by resorting to several concepts from
convex analysis, we succeeded to provide a comprehensive foundation of
$\boldsymbol{w}$-ensemble RDMFT for bosons which is further based on a
generalization of the Ritz variational principle and a constrained search
formalism. In particular, we solve the emerging $N$-representability problem
leading to a generalization of Pauli's famous exclusion principle to bosonic
mixed states.
Related papers
- Orbital-free density functional theory with first-quantized quantum subroutines [0.0]
We propose a quantum-classical hybrid scheme for performing orbital-free density functional theory (OFDFT) using probabilistic imaginary-time evolution (PITE)
PITE is applied to the part of OFDFT that searches the ground state of the Hamiltonian in each self-consistent field (SCF) iteration.
It is shown that obtaining the ground state energy of Hamiltonian requires a circuit depth of $O(log N_mathrmg)$.
arXiv Detail & Related papers (2024-07-23T05:34:11Z) - Quantum tomography of helicity states for general scattering processes [55.2480439325792]
Quantum tomography has become an indispensable tool in order to compute the density matrix $rho$ of quantum systems in Physics.
We present the theoretical framework for reconstructing the helicity quantum initial state of a general scattering process.
arXiv Detail & Related papers (2023-10-16T21:23:42Z) - D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory [79.50644650795012]
We propose a deep learning approach to solve Kohn-Sham Density Functional Theory (KS-DFT)
We prove that such an approach has the same expressivity as the SCF method, yet reduces the computational complexity.
In addition, we show that our approach enables us to explore more complex neural-based wave functions.
arXiv Detail & Related papers (2023-03-01T10:38:10Z) - Deriving density-matrix functionals for excited states [0.0]
We first study the symmetric Hubbard dimer, constituting the building block of the Hubbard model, for which we execute the Levy-Lieb constrained search.
We demonstrate three conceptually different approaches for deriving the universal functional in a homogeneous Bose gas for arbitrary pair interaction in the Bogoliubov regime.
Remarkably, in both systems the gradient of the functional is found to diverge repulsively at the boundary of the functional's domain, extending the recently discovered Bose-Einstein condensation force to excited states.
arXiv Detail & Related papers (2022-09-29T17:03:08Z) - An exact one-particle theory of bosonic excitations: From a generalized
Hohenberg-Kohn theorem to convexified N-representability [0.0]
We propose a functional theory for targeting low-lying excitation energies of bosonic quantum systems through the one-particle picture.
We employ an extension of the Rayleigh-Ritz variational principle to ensemble states with spectrum $boldsymbolw$ and prove a corresponding generalization of the Hohenberg-Kohn theorem.
Remarkably, this reveals a complete hierarchy of bosonic exclusion principle constraints in conceptual analogy to Pauli's exclusion principle for fermions.
arXiv Detail & Related papers (2022-04-27T06:02:22Z) - Mechanism for particle fractionalization and universal edge physics in
quantum Hall fluids [58.720142291102135]
We advance a second-quantization framework that helps reveal an exact fusion mechanism for particle fractionalization in FQH fluids.
We also uncover the fundamental structure behind the condensation of non-local operators characterizing topological order in the lowest-Landau-level (LLL)
arXiv Detail & Related papers (2021-10-12T18:00:00Z) - Spectral density reconstruction with Chebyshev polynomials [77.34726150561087]
We show how to perform controllable reconstructions of a finite energy resolution with rigorous error estimates.
This paves the way for future applications in nuclear and condensed matter physics.
arXiv Detail & Related papers (2021-10-05T15:16:13Z) - Foundation of one-particle reduced density matrix functional theory for
excited states [0.0]
A reduced density matrix functional theory (RDMFT) has been proposed for calculating energies of selected eigenstates of interacting many-fermion systems.
Here, we develop a solid foundation for this so-called $boldsymbolw$-RDMFT and present the details of various derivations.
arXiv Detail & Related papers (2021-06-07T19:03:32Z) - Ensemble reduced density matrix functional theory for excited states and
hierarchical generalization of Pauli's exclusion principle [0.0]
We propose and work out a reduced density matrix functional theory (RDMFT) for calculating energies of eigenstates of interacting many-electron systems.
Various obstacles which historically have doomed such an approach to be unfeasible are overcome.
arXiv Detail & Related papers (2021-06-04T15:49:31Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Method of spectral Green functions in driven open quantum dynamics [77.34726150561087]
A novel method based on spectral Green functions is presented for the simulation of driven open quantum dynamics.
The formalism shows remarkable analogies to the use of Green functions in quantum field theory.
The method dramatically reduces computational cost compared with simulations based on solving the full master equation.
arXiv Detail & Related papers (2020-06-04T09:41:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.