An exact one-particle theory of bosonic excitations: From a generalized
Hohenberg-Kohn theorem to convexified N-representability
- URL: http://arxiv.org/abs/2204.12715v2
- Date: Tue, 27 Sep 2022 15:24:06 GMT
- Title: An exact one-particle theory of bosonic excitations: From a generalized
Hohenberg-Kohn theorem to convexified N-representability
- Authors: Julia Liebert, Christian Schilling
- Abstract summary: We propose a functional theory for targeting low-lying excitation energies of bosonic quantum systems through the one-particle picture.
We employ an extension of the Rayleigh-Ritz variational principle to ensemble states with spectrum $boldsymbolw$ and prove a corresponding generalization of the Hohenberg-Kohn theorem.
Remarkably, this reveals a complete hierarchy of bosonic exclusion principle constraints in conceptual analogy to Pauli's exclusion principle for fermions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by the Penrose-Onsager criterion for Bose-Einstein condensation we
propose a functional theory for targeting low-lying excitation energies of
bosonic quantum systems through the one-particle picture. For this, we employ
an extension of the Rayleigh-Ritz variational principle to ensemble states with
spectrum $\boldsymbol{w}$ and prove a corresponding generalization of the
Hohenberg-Kohn theorem: The underlying one-particle reduced density matrix
determines all properties of systems of $N$ identical particles in their
$\boldsymbol{w}$-ensemble states. Then, to circumvent the $v$-representability
problem common to functional theories, and to deal with energetic degeneracies,
we resort to the Levy-Lieb constrained search formalism in combination with an
exact convex relaxation. The corresponding bosonic one-body
$\boldsymbol{w}$-ensemble $N$-representability problem is solved
comprehensively. Remarkably, this reveals a complete hierarchy of bosonic
exclusion principle constraints in conceptual analogy to Pauli's exclusion
principle for fermions and recently discovered generalizations thereof.
Related papers
- Interacting chiral fermions on the lattice with matrix product operator norms [37.69303106863453]
We develop a Hamiltonian formalism for simulating interacting chiral fermions on the lattice.
The fermion doubling problem is circumvented by constructing a Fock space endowed with a semi-definite norm.
We demonstrate that the scaling limit of the free model recovers the chiral fermion field.
arXiv Detail & Related papers (2024-05-16T17:46:12Z) - Quantum tomography of helicity states for general scattering processes [55.2480439325792]
Quantum tomography has become an indispensable tool in order to compute the density matrix $rho$ of quantum systems in Physics.
We present the theoretical framework for reconstructing the helicity quantum initial state of a general scattering process.
arXiv Detail & Related papers (2023-10-16T21:23:42Z) - Deriving density-matrix functionals for excited states [0.0]
We first study the symmetric Hubbard dimer, constituting the building block of the Hubbard model, for which we execute the Levy-Lieb constrained search.
We demonstrate three conceptually different approaches for deriving the universal functional in a homogeneous Bose gas for arbitrary pair interaction in the Bogoliubov regime.
Remarkably, in both systems the gradient of the functional is found to diverge repulsively at the boundary of the functional's domain, extending the recently discovered Bose-Einstein condensation force to excited states.
arXiv Detail & Related papers (2022-09-29T17:03:08Z) - Reduced Density Matrix Functional Theory for Bosons: Foundations and
Applications [0.0]
This thesis aims to initiate and establish a bosonic RDMFT for both ground state and excited state energy calculations.
Motivated by the Onsager and Penrose criterion, we derive the universal functional for a homogeneous Bose-Einstein condensates (BECs) in the Bogoliubov regime.
In the second part of the thesis, we propose and work out an ensemble RDMFT targeting excitations in bosonic quantum systems.
arXiv Detail & Related papers (2022-05-05T13:28:18Z) - Out-of-equilibrium dynamics of the Kitaev model on the Bethe lattice via
coupled Heisenberg equations [23.87373187143897]
We study the isotropic Kitaev spin-$1/2$ model on the Bethe lattice.
We take a straightforward approach of solving Heisenberg equations for a tailored subset of spin operators.
As an example, we calculate the time-dependent expectation value of this observable for a factorized translation-invariant.
arXiv Detail & Related papers (2021-10-25T17:37:33Z) - Annihilating Entanglement Between Cones [77.34726150561087]
We show that Lorentz cones are the only cones with a symmetric base for which a certain stronger version of the resilience property is satisfied.
Our proof exploits the symmetries of the Lorentz cones and applies two constructions resembling protocols for entanglement distillation.
arXiv Detail & Related papers (2021-10-22T15:02:39Z) - Conformal field theory from lattice fermions [77.34726150561087]
We provide a rigorous lattice approximation of conformal field theories given in terms of lattice fermions in 1+1-dimensions.
We show how these results lead to explicit error estimates pertaining to the quantum simulation of conformal field theories.
arXiv Detail & Related papers (2021-07-29T08:54:07Z) - Foundation of one-particle reduced density matrix functional theory for
excited states [0.0]
A reduced density matrix functional theory (RDMFT) has been proposed for calculating energies of selected eigenstates of interacting many-fermion systems.
Here, we develop a solid foundation for this so-called $boldsymbolw$-RDMFT and present the details of various derivations.
arXiv Detail & Related papers (2021-06-07T19:03:32Z) - Functional Theory for Bose-Einstein Condensates [0.0]
One-particle reduced density matrix functional theory would potentially be the ideal approach for describing Bose-Einstein condensates.
We eventually initiate and establish this novel theory by deriving the respective universal functional $mathcalF$ for general homogeneous Bose-Einstein condensates.
arXiv Detail & Related papers (2020-10-13T18:56:20Z) - Entanglement and Complexity of Purification in (1+1)-dimensional free
Conformal Field Theories [55.53519491066413]
We find pure states in an enlarged Hilbert space that encode the mixed state of a quantum field theory as a partial trace.
We analyze these quantities for two intervals in the vacuum of free bosonic and Ising conformal field theories.
arXiv Detail & Related papers (2020-09-24T18:00:13Z) - Reduced Density Matrix Functional Theory for Bosons [0.0]
We propose a ground state theory for bosonic quantum systems.
The exact functionals for this $N$-boson Hubbard dimer and general Bogoliubov-approximated systems are determined.
The gradient forces are found to diverge in the regime of Bose-Einstein condensation.
arXiv Detail & Related papers (2020-02-17T13:13:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.