論文の概要: Dual Octree Graph Networks for Learning Adaptive Volumetric Shape
Representations
- arxiv url: http://arxiv.org/abs/2205.02825v2
- Date: Fri, 6 May 2022 05:02:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-09 10:42:26.416775
- Title: Dual Octree Graph Networks for Learning Adaptive Volumetric Shape
Representations
- Title(参考訳): 適応体積形状表現学習のための2つのオクターグラフネットワーク
- Authors: Peng-Shuai Wang, Yang Liu, Xin Tong
- Abstract要約: 本手法は,3次元形状の体積場を,オクツリーによって構成された適応的特徴量で符号化する。
エンコーダ・デコーダネットワークは、オクツリーノードの二重グラフ上のグラフ畳み込みに基づいて、適応的な特徴量を学ぶように設計されている。
提案手法は, 形状詳細を効果的に符号化し, 高速な3次元形状復元を可能にし, 訓練カテゴリから3次元形状をモデル化するための優れた汎用性を示す。
- 参考スコア(独自算出の注目度): 21.59311861556396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an adaptive deep representation of volumetric fields of 3D shapes
and an efficient approach to learn this deep representation for high-quality 3D
shape reconstruction and auto-encoding. Our method encodes the volumetric field
of a 3D shape with an adaptive feature volume organized by an octree and
applies a compact multilayer perceptron network for mapping the features to the
field value at each 3D position. An encoder-decoder network is designed to
learn the adaptive feature volume based on the graph convolutions over the dual
graph of octree nodes. The core of our network is a new graph convolution
operator defined over a regular grid of features fused from irregular
neighboring octree nodes at different levels, which not only reduces the
computational and memory cost of the convolutions over irregular neighboring
octree nodes, but also improves the performance of feature learning. Our method
effectively encodes shape details, enables fast 3D shape reconstruction, and
exhibits good generality for modeling 3D shapes out of training categories. We
evaluate our method on a set of reconstruction tasks of 3D shapes and scenes
and validate its superiority over other existing approaches. Our code, data,
and trained models are available at https://wang-ps.github.io/dualocnn.
- Abstract(参考訳): 本稿では,3次元形状の体積場の適応的深部表現と,この深部表現を学習するための効率的な手法を提案する。
本手法では,octree によって整理された適応的特徴量を用いて3次元形状の体積場を符号化し,各3次元位置のフィールド値に特徴をマッピングするコンパクト多層パーセプトロンネットワークを適用する。
エンコーダ-デコーダネットワークは、octreeノードの双対グラフ上のグラフ畳み込みに基づいて適応的特徴量を学ぶように設計されている。
ネットワークのコアとなるのは,隣接する不規則なオクツリーノードから異なるレベルで融合した機能グリッド上に定義された新しいグラフ畳み込み演算子であり,不規則なオクツリーノード上の畳み込みの計算とメモリコストを削減するだけでなく,特徴学習の性能も向上する。
本手法は,形状の詳細を効果的にエンコードし,高速3次元形状再構成を可能にし,トレーニングカテゴリから3次元形状をモデル化するための汎用性を示す。
本手法は,3次元形状とシーンの再構成作業で評価し,他の既存手法よりもその優越性を検証する。
私たちのコード、データ、およびトレーニングされたモデルは、https://wang-ps.github.io/dualocnnで利用可能です。
関連論文リスト
- Locally Adaptive Neural 3D Morphable Models [38.38400553022714]
本稿では、3Dメッシュの生成と操作を学習するフレームワークであるLocally Adaptive Morphable Model (LAMM)を紹介する。
非常に効率的な計算グラフにより、我々のネットワークは、以前の手法で必要とされるメモリのごく一部でトレーニングできる。
さらに、より高度な編集操作のためのプリミティブとして局所幾何学制御を活用し、微分関数のセットを示す。
論文 参考訳(メタデータ) (2024-01-05T18:28:51Z) - Spatial-Spectral Hyperspectral Classification based on Learnable 3D
Group Convolution [18.644268589334217]
本稿では、3D-DenseNetモデルの改良と軽量モデル設計に基づく学習可能なグループ畳み込みネットワーク(LGCNet)を提案する。
LGCNetモジュールは、入力チャネルと畳み込みカーネルグループのための動的学習手法を導入することにより、グループ畳み込みの欠点を改善する。
LGCNetは推論速度と精度の進歩を達成し、インドパインズ、パヴィア大学、KSCのデータセットで主流のハイパースペクトル画像分類法より優れている。
論文 参考訳(メタデータ) (2023-07-15T05:47:12Z) - DGCNet: An Efficient 3D-Densenet based on Dynamic Group Convolution for
Hyperspectral Remote Sensing Image Classification [22.025733502296035]
改良された3D-Densenetモデルに基づく軽量モデルを導入し,DGCNetを設計する。
複数のグループは、入力画像の異なる視覚的および意味的な特徴をキャプチャし、畳み込みニューラルネットワーク(CNN)がリッチな特徴を学習できるようにする。
推論速度と精度が向上し、IN、Pavia、KSCデータセット上での優れたパフォーマンスが向上した。
論文 参考訳(メタデータ) (2023-07-13T10:19:48Z) - GraphCSPN: Geometry-Aware Depth Completion via Dynamic GCNs [49.55919802779889]
本稿では,グラフ畳み込みに基づく空間伝搬ネットワーク(GraphCSPN)を提案する。
本研究では、幾何学的表現学習において、畳み込みニューラルネットワークとグラフニューラルネットワークを相補的に活用する。
提案手法は,数段の伝搬ステップのみを使用する場合と比較して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-10-19T17:56:03Z) - Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D
Shapes [77.6741486264257]
本稿では,高忠実度ニューラルネットワークSDFのリアルタイムレンダリングを可能にする,効率的なニューラル表現を提案する。
我々の表現は、以前の作品に比べてレンダリング速度の点で2~3桁の効率であることを示す。
論文 参考訳(メタデータ) (2021-01-26T18:50:22Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
2流グラフ畳み込みネットワーク(TSGCNet)を提案し、異なる幾何学的特性から多視点情報を学ぶ。
3次元口腔内スキャナーで得られた歯科モデルのリアルタイムデータセットを用いてTSGCNetの評価を行った。
論文 参考訳(メタデータ) (2020-12-26T08:02:56Z) - Training Data Generating Networks: Shape Reconstruction via Bi-level
Optimization [52.17872739634213]
単一画像からの3次元形状再構成のための新しい3次元形状表現を提案する。
ネットワークをトレーニングしてトレーニングセットを生成し、別の学習アルゴリズムに入力して形状を定義します。
論文 参考訳(メタデータ) (2020-10-16T09:52:13Z) - Learning Local Neighboring Structure for Robust 3D Shape Representation [143.15904669246697]
3Dメッシュの表現学習は多くのコンピュータビジョンやグラフィックスアプリケーションにおいて重要である。
局所構造認識型異方性畳み込み操作(LSA-Conv)を提案する。
本モデルでは,3次元形状復元において最先端の手法に比べて顕著な改善が得られた。
論文 参考訳(メタデータ) (2020-04-21T13:40:03Z) - Implicit Functions in Feature Space for 3D Shape Reconstruction and
Completion [53.885984328273686]
Implicit Feature Networks (IF-Nets) は連続的な出力を提供し、複数のトポロジを扱える。
IF-NetsはShapeNetにおける3次元オブジェクト再構成における先行作業よりも明らかに優れており、より正確な3次元人間の再構成が得られる。
論文 参考訳(メタデータ) (2020-03-03T11:14:29Z) - 3D Shape Segmentation with Geometric Deep Learning [2.512827436728378]
本稿では,部分分割問題としてセグメント化全体を解くために,3次元形状の3次元拡張ビューを生成するニューラルネットワークベースのアプローチを提案する。
提案手法は,公開データセットの3次元形状と,フォトグラム法を用いて再構成した実物体を用いて検証する。
論文 参考訳(メタデータ) (2020-02-02T14:11:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。