Variance Reduction based Partial Trajectory Reuse to Accelerate Policy
Gradient Optimization
- URL: http://arxiv.org/abs/2205.02976v1
- Date: Fri, 6 May 2022 01:42:28 GMT
- Title: Variance Reduction based Partial Trajectory Reuse to Accelerate Policy
Gradient Optimization
- Authors: Hua Zheng, Wei Xie
- Abstract summary: We extend the idea of green simulation assisted policy gradient (GS-PG) to partial historical trajectory reuse for Markov Decision Processes (MDP)
In this paper, the mixture likelihood ratio (MLR) based policy gradient estimation is used to leverage the information from historical state decision transitions generated under different behavioral policies.
- Score: 3.621753051212441
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We extend the idea underlying the success of green simulation assisted policy
gradient (GS-PG) to partial historical trajectory reuse for infinite-horizon
Markov Decision Processes (MDP). The existing GS-PG method was designed to
learn from complete episodes or process trajectories, which limits its
applicability to low-data environment and online process control. In this
paper, the mixture likelihood ratio (MLR) based policy gradient estimation is
used to leverage the information from historical state decision transitions
generated under different behavioral policies. We propose a variance reduction
experience replay (VRER) approach that can intelligently select and reuse most
relevant transition observations, improve the policy gradient estimation
accuracy, and accelerate the learning of optimal policy. Then we create a
process control strategy by incorporating VRER with the state-of-the-art
step-based policy optimization approaches such as actor-critic method and
proximal policy optimizations. The empirical study demonstrates that the
proposed policy gradient methodology can significantly outperform the existing
policy optimization approaches.
Related papers
- vMFER: Von Mises-Fisher Experience Resampling Based on Uncertainty of Gradient Directions for Policy Improvement [57.926269845305804]
This study focuses on investigating the impact of gradient disagreements caused by ensemble critics on policy improvement.
We introduce the concept of uncertainty of gradient directions as a means to measure the disagreement among gradients utilized in the policy improvement process.
We find that transitions with lower uncertainty of gradient directions are more reliable in the policy improvement process.
arXiv Detail & Related papers (2024-05-14T14:18:25Z) - Gradient Informed Proximal Policy Optimization [35.22712034665224]
We introduce a novel policy learning method that integrates analytical gradients from differentiable environments with the Proximal Policy Optimization (PPO) algorithm.
By adaptively modifying the alpha value, we can effectively manage the influence of analytical policy gradients during learning.
Our proposed approach outperforms baseline algorithms in various scenarios, such as function optimization, physics simulations, and traffic control environments.
arXiv Detail & Related papers (2023-12-14T07:50:21Z) - IOB: Integrating Optimization Transfer and Behavior Transfer for
Multi-Policy Reuse [50.90781542323258]
Reinforcement learning (RL) agents can transfer knowledge from source policies to a related target task.
Previous methods introduce additional components, such as hierarchical policies or estimations of source policies' value functions.
We propose a novel transfer RL method that selects the source policy without training extra components.
arXiv Detail & Related papers (2023-08-14T09:22:35Z) - Acceleration in Policy Optimization [50.323182853069184]
We work towards a unifying paradigm for accelerating policy optimization methods in reinforcement learning (RL) by integrating foresight in the policy improvement step via optimistic and adaptive updates.
We define optimism as predictive modelling of the future behavior of a policy, and adaptivity as taking immediate and anticipatory corrective actions to mitigate errors from overshooting predictions or delayed responses to change.
We design an optimistic policy gradient algorithm, adaptive via meta-gradient learning, and empirically highlight several design choices pertaining to acceleration, in an illustrative task.
arXiv Detail & Related papers (2023-06-18T15:50:57Z) - Bag of Tricks for Natural Policy Gradient Reinforcement Learning [87.54231228860495]
We have implemented and compared strategies that impact performance in natural policy gradient reinforcement learning.
The proposed collection of strategies for performance optimization can improve results by 86% to 181% across the MuJuCo control benchmark.
arXiv Detail & Related papers (2022-01-22T17:44:19Z) - Variance Reduction based Experience Replay for Policy Optimization [3.0790370651488983]
Variance Reduction Experience Replay (VRER) is a framework for the selective reuse of relevant samples to improve policy gradient estimation.
VRER forms the foundation of our sample efficient off-policy learning algorithm known as Policy Gradient with VRER.
arXiv Detail & Related papers (2021-10-17T19:28:45Z) - MPC-based Reinforcement Learning for Economic Problems with Application
to Battery Storage [0.0]
We focus on policy approximations based on Model Predictive Control (MPC)
We observe that the policy gradient method can struggle to produce meaningful steps in the policy parameters when the policy has a (nearly) bang-bang structure.
We propose a homotopy strategy based on the interior-point method, providing a relaxation of the policy during the learning.
arXiv Detail & Related papers (2021-04-06T10:37:14Z) - Near Optimal Policy Optimization via REPS [33.992374484681704]
emphrelative entropy policy search (REPS) has demonstrated successful policy learning on a number of simulated and real-world robotic domains.
There exist no guarantees on REPS's performance when using gradient-based solvers.
We introduce a technique that uses emphgenerative access to the underlying decision process to compute parameter updates that maintain favorable convergence to the optimal regularized policy.
arXiv Detail & Related papers (2021-03-17T16:22:59Z) - A Study of Policy Gradient on a Class of Exactly Solvable Models [35.90565839381652]
We explore the evolution of the policy parameters, for a special class of exactly solvable POMDPs, as a continuous-state Markov chain.
Our approach relies heavily on random walk theory, specifically on affine Weyl groups.
We analyze the probabilistic convergence of policy gradient to different local maxima of the value function.
arXiv Detail & Related papers (2020-11-03T17:27:53Z) - Deep Bayesian Quadrature Policy Optimization [100.81242753620597]
Deep Bayesian quadrature policy gradient (DBQPG) is a high-dimensional generalization of Bayesian quadrature for policy gradient estimation.
We show that DBQPG can substitute Monte-Carlo estimation in policy gradient methods, and demonstrate its effectiveness on a set of continuous control benchmarks.
arXiv Detail & Related papers (2020-06-28T15:44:47Z) - Stable Policy Optimization via Off-Policy Divergence Regularization [50.98542111236381]
Trust Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO) are among the most successful policy gradient approaches in deep reinforcement learning (RL)
We propose a new algorithm which stabilizes the policy improvement through a proximity term that constrains the discounted state-action visitation distribution induced by consecutive policies to be close to one another.
Our proposed method can have a beneficial effect on stability and improve final performance in benchmark high-dimensional control tasks.
arXiv Detail & Related papers (2020-03-09T13:05:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.