A relativistic discrete spacetime formulation of 3+1 QED
- URL: http://arxiv.org/abs/2205.03148v4
- Date: Tue, 29 Oct 2024 13:17:38 GMT
- Title: A relativistic discrete spacetime formulation of 3+1 QED
- Authors: Nathanaƫl Eon, Giuseppe Di Molfetta, Giuseppe Magnifico, Pablo Arrighi,
- Abstract summary: This work provides a relativistic, digital quantum simulation scheme for both $2+1$ and $3+1$ dimensional quantum electrodynamics (QED)
It takes the form of a quantum circuit, infinitely repeating across space and time, parametrised by the discretization step $Delta_t=Delta_x$.
- Score: 0.0
- License:
- Abstract: This work provides a relativistic, digital quantum simulation scheme for both $2+1$ and $3+1$ dimensional quantum electrodynamics (QED), based on a discrete spacetime formulation of theory. It takes the form of a quantum circuit, infinitely repeating across space and time, parametrised by the discretization step $\Delta_t=\Delta_x$. Strict causality at each step is ensured as circuit wires coincide with the lightlike worldlines of QED; simulation time under decoherence is optimized. The construction replays the logic that leads to the QED Lagrangian. Namely, it starts from the Dirac quantum walk, well-known to converge towards free relativistic fermions. It then extends the quantum walk into a multi-particle sector quantum cellular automata in a way which respects the fermionic anti-commutation relations and the discrete gauge invariance symmetry. Both requirements can only be achieved at cost of introducing the gauge field. Lastly the gauge field is given its own electromagnetic dynamics, which can be formulated as a quantum walk at each plaquette.
Related papers
- Analysis of the confinement string in (2 + 1)-dimensional Quantum Electrodynamics with a trapped-ion quantum computer [0.0]
We consider a (2+1)-dimensional lattice discretization of Quantum Electrodynamics with the inclusion of fermionic matter.
A symmetry-preserving and resource-efficient variational quantum circuit is employed to prepare the ground state of the theory.
We demonstrate that results from quantum experiments on the Quantinuum H1-1 trapped-ion device and emulator, with full connectivity between qubits, agree with classical noiseless simulations.
arXiv Detail & Related papers (2024-11-08T15:18:21Z) - Analog Quantum Simulator of a Quantum Field Theory with Fermion-Spin Systems in Silicon [34.80375275076655]
Mapping fermions to qubits is challenging in $2+1$ and higher spacetime dimensions.
We propose a native fermion-(large-)spin analog quantum simulator by utilizing dopant arrays in silicon.
arXiv Detail & Related papers (2024-07-03T18:00:52Z) - Digital quantum simulator for the time-dependent Dirac equation using
discrete-time quantum walks [0.7036032466145112]
We introduce a quantum algorithm for simulating the time-dependent Dirac equation in 3+1 dimensions using discrete-time quantum walks.
Our findings indicate that relativistic dynamics is achievable with quantum computers.
arXiv Detail & Related papers (2023-05-31T05:36:57Z) - Quantum Circuit Completeness: Extensions and Simplifications [44.99833362998488]
The first complete equational theory for quantum circuits has only recently been introduced.
We simplify the equational theory by proving that several rules can be derived from the remaining ones.
The complete equational theory can be extended to quantum circuits with ancillae or qubit discarding.
arXiv Detail & Related papers (2023-03-06T13:31:27Z) - Gauge-Invariant Semi-Discrete Wigner Theory [0.0]
A gauge-invariant Wigner quantum mechanical theory is obtained by applying the Weyl-Stratonovich transform to the von Neumann equation for the density matrix.
We derive the evolution equation for the linear electromagnetic case and show that it significantly simplifies for a limit dictated by the long coherence length behavior.
arXiv Detail & Related papers (2022-08-19T08:19:09Z) - A shortcut to adiabaticity in a cavity with a moving mirror [58.720142291102135]
We describe for the first time how to implement shortcuts to adiabaticity in quantum field theory.
The shortcuts take place whenever there is no dynamical Casimir effect.
We obtain a fundamental limit for the efficiency of an Otto cycle with the quantum field as a working system.
arXiv Detail & Related papers (2022-02-01T20:40:57Z) - Quantum simulation of $\phi^4$ theories in qudit systems [53.122045119395594]
We discuss the implementation of quantum algorithms for lattice $Phi4$ theory on circuit quantum electrodynamics (cQED) system.
The main advantage of qudit systems is that its multi-level characteristic allows the field interaction to be implemented only with diagonal single-qudit gates.
arXiv Detail & Related papers (2021-08-30T16:30:33Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Quantum cellular automata and quantum field theory in two spatial
dimensions [0.0]
Quantum walks on lattices can give rise to one-particle relativistic wave equations in the long-wavelength limit.
We show that a method of construction employing distinguishable particles confined to the completely antisymmetric subspace yields a QCA in two spatial dimensions that gives rise to the 2D Dirac QFT.
arXiv Detail & Related papers (2020-10-18T20:57:05Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z) - Discretizing quantum field theories for quantum simulation [0.0]
We show that a timestep equal to or going to zero faster than the spatial lattice spacing is necessary for quantum simulations of QFT.
We give a quantum circuit exactly equivalent to the real-time path integral from the discrete-time Lagrangian formulation of lattice QFT.
All of these circuits have an analogue of a lightcone on the lattice and therefore are examples of quantum cellular automata.
arXiv Detail & Related papers (2020-02-07T06:55:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.