UAV-aided RF Mapping for Sensing and Connectivity in Wireless Networks
- URL: http://arxiv.org/abs/2205.03335v1
- Date: Fri, 6 May 2022 16:16:08 GMT
- Title: UAV-aided RF Mapping for Sensing and Connectivity in Wireless Networks
- Authors: David Gesbert, Omid Esrafilian, Junting Chen, Rajeev Gangula, Urbashi
Mitra
- Abstract summary: The use of unmanned aerial vehicles (UAV) as flying radio access network (RAN) nodes offers a promising complement to traditional fixed terrestrial deployments.
Radio mapping is one of the challenges related to this task, referred here as radio mapping.
The advantages induced by radio-mapping in terms of connectivity, sensing, and localization performance are illustrated.
- Score: 52.14281905671453
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of unmanned aerial vehicles (UAV) as flying radio access network
(RAN) nodes offers a promising complement to traditional fixed terrestrial
deployments. More recently yet still in the context of wireless networks,
drones have also been envisioned for use as radio frequency (RF) sensing and
localization devices. In both cases, the advantage of using UAVs lies in their
ability to navigate themselves freely in 3D and in a timely manner to locations
of space where the obtained network throughput or sensing performance is
optimal. In practice, the selection of a proper location or trajectory for the
UAV very much depends on local terrain features, including the position of
surrounding radio obstacles. Hence, the robot must be able to map the features
of its radio environment as it performs its data communication or sensing
services. The challenges related to this task, referred here as radio mapping,
are discussed in this paper. Its promises related to efficient trajectory
design for autonomous radio-aware UAVs are highlighted, along with algorithm
solutions. The advantages induced by radio-mapping in terms of connectivity,
sensing, and localization performance are illustrated.
Related papers
- RayProNet: A Neural Point Field Framework for Radio Propagation Modeling in 3D Environments [1.7074276434401858]
We introduce a novel machine learning-empowered methodology for wireless channel modeling.
Key ingredients include a point-cloud-based neural network and a Spherical Harmonics encoder with light probes.
arXiv Detail & Related papers (2024-06-04T01:06:41Z) - The Future of Aerial Communications: A Survey of IRS-Enhanced UAV Communication Technologies [2.8002534443865987]
The advent of Intelligent Reflecting Surfaces (IRS) and Unmanned Aerial Vehicles (UAVs) is setting a new benchmark in the field of wireless communications.
IRS, with their groundbreaking ability to manipulate electromagnetic waves, have opened avenues for substantial enhancements in signal quality, network efficiency, and spectral usage.
UAVs have emerged as dynamic, versatile elements within communication networks, offering high mobility and the ability to access and enhance coverage in areas where traditional, fixed infrastructure falls short.
arXiv Detail & Related papers (2024-06-02T09:58:53Z) - Fast and Accurate Cooperative Radio Map Estimation Enabled by GAN [63.90647197249949]
In the 6G era, real-time radio resource monitoring and management are urged to support diverse wireless-empowered applications.
In this paper, we present a cooperative radio map estimation approach enabled by the generative adversarial network (GAN)
arXiv Detail & Related papers (2024-02-05T05:01:28Z) - NVRadarNet: Real-Time Radar Obstacle and Free Space Detection for
Autonomous Driving [57.03126447713602]
We present a deep neural network (DNN) that detects dynamic obstacles and drivable free space using automotive RADAR sensors.
The network runs faster than real time on an embedded GPU and shows good generalization across geographic regions.
arXiv Detail & Related papers (2022-09-29T01:30:34Z) - 5G Network on Wings: A Deep Reinforcement Learning Approach to the
UAV-based Integrated Access and Backhaul [11.197456628712846]
Unmanned aerial vehicle (UAV) based aerial networks offer a promising alternative for fast, flexible, and reliable wireless communications.
In this paper, we study how to control multiple UAV-BSs in both static and dynamic environments.
Deep reinforcement learning algorithm is developed to jointly optimize the three-dimensional placement of these multiple UAV-BSs.
arXiv Detail & Related papers (2022-02-04T07:45:06Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
Monitoring wireless spectrum over spatial, temporal, and frequency domains will become a critical feature in beyond-5G and 6G communication technologies.
In this paper, we present a Generative Adversarial Network (GAN) machine learning model to interpolate irregularly distributed measurements across the spatial domain.
arXiv Detail & Related papers (2021-11-23T22:25:10Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
We propose a framework for a team of UAVs to cooperatively explore and find a target in complex GPS-denied environments with obstacles.
The team of UAVs autonomously navigates, explores, detects, and finds the target in a cluttered environment with a known map.
Results indicate that the proposed multi-UAV system has improvements in terms of time-cost, the proportion of search area surveyed, as well as successful rates for search and rescue missions.
arXiv Detail & Related papers (2021-07-19T12:54:04Z) - A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From
Communications to Sensing and Intelligence [152.89360859658296]
5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC) and massive machine-type communications (mMTC)
On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in 3D space.
On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference.
arXiv Detail & Related papers (2020-10-19T08:56:04Z) - Simultaneous Navigation and Radio Mapping for Cellular-Connected UAV
with Deep Reinforcement Learning [46.55077580093577]
How to achieve ubiquitous 3D communication coverage for UAVs in the sky is a new challenge.
We propose a new coverage-aware navigation approach, which exploits the UAV's controllable mobility to design its navigation/trajectory.
We propose a new framework called simultaneous navigation and radio mapping (SNARM), where the UAV's signal measurement is used to train the deep Q network.
arXiv Detail & Related papers (2020-03-17T08:16:14Z) - Dynamic Radar Network of UAVs: A Joint Navigation and Tracking Approach [36.587096293618366]
An emerging problem is to track unauthorized small unmanned aerial vehicles (UAVs) hiding behind buildings.
This paper proposes the idea of a dynamic radar network of UAVs for real-time and high-accuracy tracking of malicious targets.
arXiv Detail & Related papers (2020-01-13T23:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.