Deep learning for spatio-temporal forecasting -- application to solar
energy
- URL: http://arxiv.org/abs/2205.03571v1
- Date: Sat, 7 May 2022 06:42:48 GMT
- Title: Deep learning for spatio-temporal forecasting -- application to solar
energy
- Authors: Vincent Le Guen
- Abstract summary: This thesis tackles the subject of principled-temporal forecasting with deep learning.
The motivating application at Electricity de France (EDF) is short-term solar energy forecasting with fisheye images.
- Score: 12.5097469793837
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This thesis tackles the subject of spatio-temporal forecasting with deep
learning. The motivating application at Electricity de France (EDF) is
short-term solar energy forecasting with fisheye images. We explore two main
research directions for improving deep forecasting methods by injecting
external physical knowledge. The first direction concerns the role of the
training loss function. We show that differentiable shape and temporal criteria
can be leveraged to improve the performances of existing models. We address
both the deterministic context with the proposed DILATE loss function and the
probabilistic context with the STRIPE model. Our second direction is to augment
incomplete physical models with deep data-driven networks for accurate
forecasting. For video prediction, we introduce the PhyDNet model that
disentangles physical dynamics from residual information necessary for
prediction, such as texture or details. We further propose a learning framework
(APHYNITY) that ensures a principled and unique linear decomposition between
physical and data-driven components under mild assumptions, leading to better
forecasting performances and parameter identification.
Related papers
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
This paper proposes a physics-AI hybrid model (i.e., WeatherGFT) which Generalizes weather forecasts to Finer-grained Temporal scales.
Specifically, we employ a carefully designed PDE kernel to simulate physical evolution on a small time scale.
We introduce a lead time-aware training framework to promote the generalization of the model at different lead times.
arXiv Detail & Related papers (2024-05-22T16:21:02Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - AirPhyNet: Harnessing Physics-Guided Neural Networks for Air Quality
Prediction [40.58819011476455]
This paper presents a novel approach named Physics guided Neural Network for Air Quality Prediction (AirPhyNet)
We leverage two well-established physics principles of air particle movement (diffusion and advection) by representing them as differential equation networks.
Experiments on two real-world benchmark datasets demonstrate that AirPhyNet outperforms state-of-the-art models for different testing scenarios.
arXiv Detail & Related papers (2024-02-06T07:55:54Z) - PreDiff: Precipitation Nowcasting with Latent Diffusion Models [28.52267957954304]
We develop a conditional latent diffusion model capable of probabilistic forecasts.
We incorporate an explicit knowledge alignment mechanism to align forecasts with domain-specific physical constraints.
arXiv Detail & Related papers (2023-07-19T19:19:13Z) - A comparative assessment of deep learning models for day-ahead load
forecasting: Investigating key accuracy drivers [2.572906392867547]
Short-term load forecasting (STLF) is vital for the effective and economic operation of power grids and energy markets.
Several deep learning models have been proposed in the literature for STLF, reporting promising results.
arXiv Detail & Related papers (2023-02-23T17:11:04Z) - Physically Explainable CNN for SAR Image Classification [59.63879146724284]
In this paper, we propose a novel physics guided and injected neural network for SAR image classification.
The proposed framework comprises three parts: (1) generating physics guided signals using existing explainable models, (2) learning physics-aware features with physics guided network, and (3) injecting the physics-aware features adaptively to the conventional classification deep learning model for prediction.
The experimental results show that our proposed method substantially improve the classification performance compared with the counterpart data-driven CNN.
arXiv Detail & Related papers (2021-10-27T03:30:18Z) - An Interpretable Probabilistic Model for Short-Term Solar Power
Forecasting Using Natural Gradient Boosting [0.0]
We propose a two stage probabilistic forecasting framework able to generate highly accurate, reliable, and sharp forecasts.
The framework offers full transparency on both the point forecasts and the prediction intervals (PIs)
To highlight the performance and the applicability of the proposed framework, real data from two PV parks located in Southern Germany are employed.
arXiv Detail & Related papers (2021-08-05T12:59:38Z) - Deep learning for improved global precipitation in numerical weather
prediction systems [1.721029532201972]
We use the UNET architecture of a deep convolutional neural network with residual learning as a proof of concept to learn global data-driven models of precipitation.
The results are compared with the operational dynamical model used by the India Meteorological Department.
This study is a proof-of-concept showing that residual learning-based UNET can unravel physical relationships to target precipitation.
arXiv Detail & Related papers (2021-06-20T05:10:42Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.