Physically Explainable CNN for SAR Image Classification
- URL: http://arxiv.org/abs/2110.14144v1
- Date: Wed, 27 Oct 2021 03:30:18 GMT
- Title: Physically Explainable CNN for SAR Image Classification
- Authors: Zhongling Huang, Xiwen Yao, Corneliu Octavian Dumitru, Mihai Datcu,
Junwei Han
- Abstract summary: In this paper, we propose a novel physics guided and injected neural network for SAR image classification.
The proposed framework comprises three parts: (1) generating physics guided signals using existing explainable models, (2) learning physics-aware features with physics guided network, and (3) injecting the physics-aware features adaptively to the conventional classification deep learning model for prediction.
The experimental results show that our proposed method substantially improve the classification performance compared with the counterpart data-driven CNN.
- Score: 59.63879146724284
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrating the special electromagnetic characteristics of Synthetic Aperture
Radar (SAR) in deep neural networks is essential in order to enhance the
explainability and physics awareness of deep learning. In this paper, we
firstly propose a novel physics guided and injected neural network for SAR
image classification, which is mainly guided by explainable physics models and
can be learned with very limited labeled data. The proposed framework comprises
three parts: (1) generating physics guided signals using existing explainable
models, (2) learning physics-aware features with physics guided network, and
(3) injecting the physics-aware features adaptively to the conventional
classification deep learning model for prediction. The prior knowledge,
physical scattering characteristic of SAR in this paper, is injected into the
deep neural network in the form of physics-aware features which is more
conducive to understanding the semantic labels of SAR image patches. A hybrid
Image-Physics SAR dataset format is proposed, and both Sentinel-1 and Gaofen-3
SAR data are taken for evaluation. The experimental results show that our
proposed method substantially improve the classification performance compared
with the counterpart data-driven CNN. Moreover, the guidance of explainable
physics signals leads to explainability of physics-aware features and the
physics consistency of features are also preserved in the predictions. We deem
the proposed method would promote the development of physically explainable
deep learning in SAR image interpretation field.
Related papers
- Transport-Embedded Neural Architecture: Redefining the Landscape of physics aware neural models in fluid mechanics [0.0]
A physical problem, the Taylor-Green vortex, defined on a bi-periodic domain, is used as a benchmark to evaluate the performance of both the standard physics-informed neural network and our model.
Results exhibit that while the standard physics-informed neural network fails to predict the solution accurately and merely returns the initial condition for the entire time span, our model successfully captures the temporal changes in the physics.
arXiv Detail & Related papers (2024-10-05T10:32:51Z) - Latent Intuitive Physics: Learning to Transfer Hidden Physics from A 3D Video [58.043569985784806]
We introduce latent intuitive physics, a transfer learning framework for physics simulation.
It can infer hidden properties of fluids from a single 3D video and simulate the observed fluid in novel scenes.
We validate our model in three ways: (i) novel scene simulation with the learned visual-world physics, (ii) future prediction of the observed fluid dynamics, and (iii) supervised particle simulation.
arXiv Detail & Related papers (2024-06-18T16:37:44Z) - Physics-Informed Neural Networks with Hard Linear Equality Constraints [9.101849365688905]
This work proposes a novel physics-informed neural network, KKT-hPINN, which rigorously guarantees hard linear equality constraints.
Experiments on Aspen models of a stirred-tank reactor unit, an extractive distillation subsystem, and a chemical plant demonstrate that this model can further enhance the prediction accuracy.
arXiv Detail & Related papers (2024-02-11T17:40:26Z) - AirPhyNet: Harnessing Physics-Guided Neural Networks for Air Quality
Prediction [40.58819011476455]
This paper presents a novel approach named Physics guided Neural Network for Air Quality Prediction (AirPhyNet)
We leverage two well-established physics principles of air particle movement (diffusion and advection) by representing them as differential equation networks.
Experiments on two real-world benchmark datasets demonstrate that AirPhyNet outperforms state-of-the-art models for different testing scenarios.
arXiv Detail & Related papers (2024-02-06T07:55:54Z) - Physics Inspired Hybrid Attention for SAR Target Recognition [61.01086031364307]
We propose a physics inspired hybrid attention (PIHA) mechanism and the once-for-all (OFA) evaluation protocol to address the issues.
PIHA leverages the high-level semantics of physical information to activate and guide the feature group aware of local semantics of target.
Our method outperforms other state-of-the-art approaches in 12 test scenarios with same ASC parameters.
arXiv Detail & Related papers (2023-09-27T14:39:41Z) - Physics-Driven Turbulence Image Restoration with Stochastic Refinement [80.79900297089176]
Image distortion by atmospheric turbulence is a critical problem in long-range optical imaging systems.
Fast and physics-grounded simulation tools have been introduced to help the deep-learning models adapt to real-world turbulence conditions.
This paper proposes the Physics-integrated Restoration Network (PiRN) to help the network to disentangle theity from the degradation and the underlying image.
arXiv Detail & Related papers (2023-07-20T05:49:21Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
Trajectory prediction has been widely pursued in many fields, and many model-based and model-free methods have been explored.
We propose a new method combining both methodologies based on a new Neural Differential Equation model.
Our new model (Neural Social Physics or NSP) is a deep neural network within which we use an explicit physics model with learnable parameters.
arXiv Detail & Related papers (2022-07-21T12:11:18Z) - ST-PCNN: Spatio-Temporal Physics-Coupled Neural Networks for Dynamics
Forecasting [15.265694039283106]
We propose a physics-coupled neural network model to learn parameters governing the physics of the system.
A-temporal physics-coupled neural network (ST-PCNN) model is proposed to achieve three goals.
Experiments, using simulated and field-collected ocean data, validate that ST-PCNN outperforms existing physics-informed models.
arXiv Detail & Related papers (2021-08-12T19:34:00Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - The use of Convolutional Neural Networks for signal-background
classification in Particle Physics experiments [0.4301924025274017]
We present an extensive convolutional neural architecture search, achieving high accuracy for signal/background discrimination for a HEP classification use-case.
We demonstrate among other things that we can achieve the same accuracy as complex ResNet architectures with CNNs with less parameters.
arXiv Detail & Related papers (2020-02-13T19:54:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.